17.設(shè)復(fù)數(shù)z=1-$\sqrt{3}$i(i是虛數(shù)單位),則$\frac{2}{z•\overline{z}}$+$\frac{i}{1-i}$=(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}$iC.$\frac{1}{2}$iD.-$\frac{1}{2}$i

分析 把z=1-$\sqrt{3}$i代入$\frac{2}{z•\overline{z}}$+$\frac{i}{1-i}$,再由復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:∵z=1-$\sqrt{3}$i,
∴$\frac{2}{z•\overline{z}}$+$\frac{i}{1-i}$=$\frac{2}{|z{|}^{2}}+\frac{i}{1-i}=\frac{2}{4}+\frac{i(1+i)}{2}=\frac{1}{2}i$.
故選:C.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4)是拋物線C:y2=8x上的點,F(xiàn)是拋物線C上的焦點,若|PF1|+|PF2|+|PF3|+|PF4|=20,則x1+x2+x3+x4等于( 。
A.8B.10C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某中學(xué)隨機選取了40名男生,將他們的身高作為樣本進行統(tǒng)計,得到如圖所示的頻率分布直方圖.觀察圖中數(shù)據(jù),完成下列問題.
(Ⅰ)求a的值及樣本中男生身高在[185,195](單位:cm)的人數(shù);
(Ⅱ)假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,通過樣本估計該校全體男生的平均身高;
(Ⅲ)在樣本中,從身高在[145,155)和[185,195](單位:cm)內(nèi)的男生中任選兩人,求這兩人的身高都不低于185cm的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若雙曲線x2+my2=2的虛軸長為2,則該雙曲線的焦距為(  )
A.2B.2$\sqrt{2}$C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左,右焦點分別為F1,F(xiàn)2,過F1任作一條與兩坐標軸都不垂直的直線,與C交于A,B兩點,且△ABF2的周長為8.當直線AB的斜率為$\frac{3}{4}$時,AF2與x軸垂直.
(I)求橢圓C的方程;
(Ⅱ)在x軸上是否存在定點M,總能使MF1平分∠AMB?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.神舟五號飛船成功完成了第一次載人航天飛行,實現(xiàn)了中國人民的航天夢想,某段時間飛船在太空中運行的軌道是一個橢圓,地球在橢圓的一個焦點上,如圖所示,假設(shè)航天員到地球最近距離為d1,到地球最遠距離為d2,地球的半徑為R,我們想象存在一個鏡像地球,其中心在神舟飛船運行軌道的另外一個焦點上,上面住著一個神仙發(fā)射某種神秘信號需要飛行中的航天員中轉(zhuǎn)后地球人才能接收到,則神秘信號傳導(dǎo)的最短距離為( 。
A.d1+d2+RB.d2-d1+2RC.d2+d1-2RD.d1+d2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{an}的前n項和為Sn,且a1=1,an+1=$\left\{\begin{array}{l}{{a}_{n}+3,\frac{n}{3}∉N*}\\{{a}_{n},\frac{n}{3}∈N*}\end{array}\right.$,則S3n=9n2+3n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x3-3a2x+2a2+1(a≥0)
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-2,3)內(nèi)極值點的個數(shù);
(Ⅲ)證明:當0≤x≤1時,f(x)+|1-a2|≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}滿足Sn+an=2n+1.
(1)寫出a1,a2,a3并推出的an表達式;
(2)用數(shù)學(xué)歸納法證明所得的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案