2.神舟五號飛船成功完成了第一次載人航天飛行,實現(xiàn)了中國人民的航天夢想,某段時間飛船在太空中運行的軌道是一個橢圓,地球在橢圓的一個焦點上,如圖所示,假設(shè)航天員到地球最近距離為d1,到地球最遠距離為d2,地球的半徑為R,我們想象存在一個鏡像地球,其中心在神舟飛船運行軌道的另外一個焦點上,上面住著一個神仙發(fā)射某種神秘信號需要飛行中的航天員中轉(zhuǎn)后地球人才能接收到,則神秘信號傳導(dǎo)的最短距離為( 。
A.d1+d2+RB.d2-d1+2RC.d2+d1-2RD.d1+d2

分析 設(shè)橢圓的方程,根據(jù)題意可得:$\left\{\begin{array}{l}{lbrfrfx_{1}+R=a-c}\\{z5hlznh_{2}+R=a+c}\end{array}\right.$,則2a=d1+d2+2R,利用橢圓的定義可知神秘信號的最短距離為丨PF1丨+丨PF2丨-2R=2a-2R=d1+d2

解答 解:設(shè)橢圓的方程$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),半焦距為c,
兩焦點分別為F1,F(xiàn)1,運行中的航天員為P,
由已知可得:$\left\{\begin{array}{l}{hlzlbpd_{1}+R=a-c}\\{vfthvhv_{2}+R=a+c}\end{array}\right.$,則2a=d1+d2+2R,
神秘信號的最短距離為丨PF1丨+丨PF2丨-2R=2a-2R=d1+d2,
神秘信號傳導(dǎo)的最短距離d1+d2,
故選D.

點評 本題考查橢圓的性質(zhì),考查橢圓定義的物理應(yīng)用,考查利用橢圓方程解決實際問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知在一次全國數(shù)學(xué)競賽中,某市3000名參賽學(xué)生的初賽成績統(tǒng)計如圖所示.
(1)求a的值,并估計該市學(xué)生在本次數(shù)學(xué)競賽中,成績在的[80,90)上的學(xué)生人數(shù);
(2)若在本次考試中選取1500人入圍決賽,則進入復(fù)賽學(xué)生的分數(shù)應(yīng)當如何制定(結(jié)果用分數(shù)表示);
(3 ) 若以該市考生的成績情況估計全省考生的成績情況,從全省考生中隨機抽取4名考生,記成績在80分以上(含80分)的考生人數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在平面直角坐標系xOy中.點M不與點O重合,稱射線OM與圓x2+y2=1的交點N為點M的“中心投影點“.
(1)點M(1,$\sqrt{3}$)的“中心投影點”為($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)
(2)曲線x2$-\frac{{y}^{2}}{3}=1$上所有點的“中心投影點”構(gòu)成的曲線的長度是$\frac{4π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè){an}是由正數(shù)組成的等比數(shù)列,Sn是{an}的前n項和.已知a2a4=16,S3=28,則a1a2…an最大時,n的值為3或4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)復(fù)數(shù)z=1-$\sqrt{3}$i(i是虛數(shù)單位),則$\frac{2}{z•\overline{z}}$+$\frac{i}{1-i}$=( 。
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}$iC.$\frac{1}{2}$iD.-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知點P($\sqrt{3}$,$\frac{1}{2}$)在橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上,F(xiàn)為右焦點,PF垂直于x軸,A,B,C,D為橢圓上四個動點,且AC,BD交于原點O.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),滿足$\frac{{{y}_{1}y}_{2}}{\overrightarrow{OA}•\overrightarrow{OB}}$=$\frac{1}{5}$,判斷kAB+kBC的值是否為定值,若是,求出此定值,并求出四邊形ABCD面積的最大值,否則請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)x∈R,則“x<4”是“x2-2x-8<0”的( 。
A.必要而不充分條件B.充分而不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.△ABC的內(nèi)角A,B,C的對邊分別是a,b,c,若a2=(b+c)2-4,△ABC的面積為$\sqrt{3}$,則A等于(  )
A.30°B.60°C.150°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在多面體ABCDEF中,底面ABCD是邊長為2的菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,DE=2,M為線段BF上一點,且DM⊥平面ACE.
(1)求BM的長;
(2)求二面角A-DM-B的余弦值的大。

查看答案和解析>>

同步練習(xí)冊答案