6.在如圖所示的幾何體中,平面ADNM⊥平面ABCD,四邊形ABCD是菱形,ADNM是矩形,$∠DAB=\frac{π}{3}$,AB=2,AM=1,E是AB的中點(diǎn).
(1)求證:平面DEM⊥平面ABM;
(2)在線段AM上是否存在點(diǎn)P,使二面角P-EC-D的大小為$\frac{π}{4}$?若存在,求出AP的長(zhǎng);若不存在,請(qǐng)說明理由.

分析 (1)推導(dǎo)出DE⊥CD,ND⊥AD,從而ND⊥DE,進(jìn)而DE⊥平面NDC,由此能證明平面MAE⊥平面NDC.
(2)以D為原點(diǎn),建立空間直角坐標(biāo)系D-xyz,求出平面PEC的一個(gè)法向量、平面ECD的法向量.利用向量的夾角公式,建立方程,即可得出結(jié)論.

解答 證明:(1)∵ABCD是菱形,∴AD=AB,∵∠DAB=60°,∴△ABD為等邊三角形,
E為AB中點(diǎn),∴DE⊥AB,∴DE⊥CD,
∵ADMN是矩形,∴ND⊥AD,
又平面ADMN⊥平面ABCD,平面ADMN∩平面ABCD=AD,
∴ND⊥平面ABCD,∴ND⊥DE,
∵CD∩ND=D,∴DE⊥平面NDC,
∵DE?平面MDE,∴平面MDE⊥平面NDC.
因?yàn)槊鍭BM∥面NDC,∴平面DEM⊥平面ABM;
(2)解:設(shè)存在P符合題意.
由(Ⅰ)知,DE、DC、DN兩兩垂直,以D為原點(diǎn),建立空間直角坐標(biāo)系D-xyz(如圖),
則D(0,0,0),A($\sqrt{3}$,-1,0),E($\sqrt{3}$,0,0),C(0,2,0),P($\sqrt{3}$,-1,h)(0≤h≤1).
∴$\overrightarrow{EP}$=(0,-1,h),$\overrightarrow{EC}$=(-$\sqrt{3}$,2,0),設(shè)平面PEC的法向量為$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EP}=-y+hz=0}\\{\overrightarrow{n}•\overrightarrow{EC}=-\sqrt{3}x+2y=0}\end{array}\right.$令x=2h,則平面PEC的一個(gè)法向量為$\overrightarrow{n}$=(2h,$\sqrt{3}$h,$\sqrt{3}$) 
取平面ECD的法向量$\overrightarrow{m}$=(0,0,1),
cos45°=$\frac{\sqrt{3}}{\sqrt{7{h}^{2}+3}}$,解得h=$\frac{\sqrt{21}}{7}$∈[0,1],
即存在點(diǎn)P,使二面角P-EC-D的大小為$\frac{π}{4}$,此時(shí)AP=$\frac{\sqrt{21}}{7}$.

點(diǎn)評(píng) 本題考查線面垂直,考查二面角,考查向量法的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F2的直線l交橢圓于A,B兩點(diǎn),△ABF1的周長(zhǎng)為8,且△AF1F2的面積的最大時(shí),△AF1F2為正三角形.
(1)求橢圓C的方程;
(2)若是橢圓C經(jīng)過原點(diǎn)的弦,MN∥AB,求證:$\frac{|MN{|}^{2}}{|AB|}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖(1),在四棱錐P-ABCD中,底面為正方形,PC與底面ABCD垂直,圖(2)為該四棱錐的正視圖和側(cè)視圖,它們是腰長(zhǎng)為6cm的全等的等腰直角三角形.

(1)根據(jù)圖所給的正視圖、側(cè)視圖,畫出相應(yīng)的俯視圖,并求出該俯視圖的面積;
(2)在四棱錐P-ABCD中,求PA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中底面ABCD是直角梯形,AB∥CD,∠ABC=90°,AB=2CD,BC=$\sqrt{3}$CD,△APB是等邊三角形,且側(cè)面APB⊥底面ABCD,E,F(xiàn)分別是PC,AB的中點(diǎn).
(1)求證:PA∥平面DEF.
(2)求平面DEF與平面PCD所成的二面角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,$tanA=\frac{1}{2},cosB=\frac{{3\sqrt{10}}}{10}$,則tanC的值是(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖1,以BD為直徑的圓O經(jīng)過A,C兩點(diǎn),延長(zhǎng)DA,CB交于P點(diǎn),如圖2,將PAB沿線段AB折起,使P點(diǎn)在底面ABCD的射影恰為AD的中點(diǎn)Q,AB=BC=1,BD=2,線段PB,PC的中點(diǎn)為E,F(xiàn).
(1)判斷四點(diǎn)A,D,E,F(xiàn)是否共面,并說明理由;
(2)求四棱錐E-ABCQ的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知三棱錐A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.
(1)求證:平面ABC⊥平面ACD;
(2)若E為AB中點(diǎn),求點(diǎn)A到平面CED的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.將函數(shù)y=cos(2x+$\frac{π}{3}$)的圖象向左平移$\frac{π}{6}$個(gè)單位后,得到f(x)的圖象,則( 。
A.f(x)=-sin2xB.f(x)的圖象關(guān)于x=-$\frac{π}{3}$對(duì)稱
C.f($\frac{7π}{3}$)=$\frac{1}{2}$D.f(x)的圖象關(guān)于($\frac{π}{12}$,0)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合M={x|16-x2≥0},集合N={y|y=|x|+1},則M∩N=( 。
A.{x|-2≤x≤4}B.{x|x≥1}C.{x|1≤x≤4}D.{x|x≥-2}

查看答案和解析>>

同步練習(xí)冊(cè)答案