分析 (1)推導(dǎo)出DE⊥CD,ND⊥AD,從而ND⊥DE,進(jìn)而DE⊥平面NDC,由此能證明平面MAE⊥平面NDC.
(2)以D為原點(diǎn),建立空間直角坐標(biāo)系D-xyz,求出平面PEC的一個(gè)法向量、平面ECD的法向量.利用向量的夾角公式,建立方程,即可得出結(jié)論.
解答 證明:(1)∵ABCD是菱形,∴AD=AB,∵∠DAB=60°,∴△ABD為等邊三角形,
E為AB中點(diǎn),∴DE⊥AB,∴DE⊥CD,
∵ADMN是矩形,∴ND⊥AD,
又平面ADMN⊥平面ABCD,平面ADMN∩平面ABCD=AD,
∴ND⊥平面ABCD,∴ND⊥DE,
∵CD∩ND=D,∴DE⊥平面NDC,
∵DE?平面MDE,∴平面MDE⊥平面NDC.
因?yàn)槊鍭BM∥面NDC,∴平面DEM⊥平面ABM;
(2)解:設(shè)存在P符合題意.
由(Ⅰ)知,DE、DC、DN兩兩垂直,以D為原點(diǎn),建立空間直角坐標(biāo)系D-xyz(如圖),
則D(0,0,0),A($\sqrt{3}$,-1,0),E($\sqrt{3}$,0,0),C(0,2,0),P($\sqrt{3}$,-1,h)(0≤h≤1).
∴$\overrightarrow{EP}$=(0,-1,h),$\overrightarrow{EC}$=(-$\sqrt{3}$,2,0),設(shè)平面PEC的法向量為$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EP}=-y+hz=0}\\{\overrightarrow{n}•\overrightarrow{EC}=-\sqrt{3}x+2y=0}\end{array}\right.$令x=2h,則平面PEC的一個(gè)法向量為$\overrightarrow{n}$=(2h,$\sqrt{3}$h,$\sqrt{3}$)
取平面ECD的法向量$\overrightarrow{m}$=(0,0,1),
cos45°=$\frac{\sqrt{3}}{\sqrt{7{h}^{2}+3}}$,解得h=$\frac{\sqrt{21}}{7}$∈[0,1],
即存在點(diǎn)P,使二面角P-EC-D的大小為$\frac{π}{4}$,此時(shí)AP=$\frac{\sqrt{21}}{7}$.
點(diǎn)評(píng) 本題考查線面垂直,考查二面角,考查向量法的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=-sin2x | B. | f(x)的圖象關(guān)于x=-$\frac{π}{3}$對(duì)稱 | ||
C. | f($\frac{7π}{3}$)=$\frac{1}{2}$ | D. | f(x)的圖象關(guān)于($\frac{π}{12}$,0)對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-2≤x≤4} | B. | {x|x≥1} | C. | {x|1≤x≤4} | D. | {x|x≥-2} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com