分析 (1)根據(jù)函數(shù)f(x)=$\left\{\begin{array}{l}x+4,x≥2\\ 3x,-1<x<2\\-x-4,x≤-1\end{array}\right.$,分類討論,求得f(x)>2的解集.
(2)由f(x)的解析式求得f(x)的最小值為f(-1)=-3,可得t3+2t-3≥0,即可求得實數(shù)t的取值范圍.
解答 解:(1)f(x)=|2x+2|-|x-2|=$\left\{\begin{array}{l}x+4,x≥2\\ 3x,-1<x<2\\-x-4,x≤-1\end{array}\right.$
當(dāng)x≤-1時,不等式即-x-4<0,求得x>-4,∴-4<x≤-1.
當(dāng)-1<x<2時,不等式即3x<0,求得x<0,∴-1<x<0.
當(dāng)x≥2時,不等式即x+4<0,求得x<-4,不成立.
綜上所述,f(x)<0的解集為(-4,0).
(2)由(1)知,f(x)最小值為-3,∴t3+2t-3≥0
∴(t-1)(t2+t+3)≥0,又∵t2+t+3>0恒成立,
∴t≥1.
點評 主要考查絕對值不等式的解法,函數(shù)的恒成立問題,體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{2}{5}$ | B. | $-\frac{2}{5}i$ | C. | $\frac{2}{5}$ | D. | $\frac{2}{5}i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 0 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com