A. | -4 | B. | -3 | C. | -2 | D. | -1 |
分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,由z=x+y+m的最小值-2,即當(dāng)目標(biāo)函數(shù)經(jīng)過點(1,1)時取得最小值,利用數(shù)形結(jié)合確定m的取值.
解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
由目標(biāo)函數(shù)z=x+y+m得y=-x+z+m,
則直線的截距最小,z最小.
∵目標(biāo)函數(shù)z=x+y+m的-2,
∴當(dāng)目標(biāo)函數(shù)經(jīng)過點A(1,1)時,取得最小值,
∴1+1+m=-2,即m=-4;
故選:A.
點評 本題主要考查線性規(guī)劃的應(yīng)用,結(jié)合目標(biāo)函數(shù)的幾何意義,確定目標(biāo)函數(shù)的截距是解決本題的關(guān)鍵,利用數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 周期為π的偶函數(shù) | B. | 周期為π的奇函數(shù) | ||
C. | 周期為2π的偶函數(shù) | D. | 周期為2π的奇函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題p的否命題為:若θ是第二象限角,則sinθ(1-2 cos2$\frac{θ}{2}$)<0 | |
B. | 命題p的否命題為:若θ不是第二象限角,則sinθ(1-2 cos2$\frac{θ}{2}$)>0 | |
C. | 命題p是假命題 | |
D. | 命題p的逆命題是假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -$\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 22016 | D. | 32016 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com