【題目】已知函數(shù)

1)求的單調(diào)區(qū)間和極值;

2)若對于任意的,都存在,使得,求的取值范圍

【答案】(1)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是,當(dāng)時,取極小值,當(dāng)時,取極大值(2)

【解析】

試題(1)求函數(shù)單調(diào)區(qū)間及極值,先明確定義域:R,再求導(dǎo)數(shù)在定義域下求導(dǎo)函數(shù)的零點(diǎn):,通過列表分析,根據(jù)導(dǎo)函數(shù)符號變化規(guī)律,確定單調(diào)區(qū)間及極值,即的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是,當(dāng)時,取極小值,當(dāng)時,取極大值, (2)本題首先要正確轉(zhuǎn)化:對于任意的,都存在,使得等價于兩個函數(shù)值域的包含關(guān)系.設(shè)集合,集合,其次挖掘隱含條件,簡化討論情況,明確討論方向.由于,所以,因此,又,所以,即

(1)由已知有,解得,列表如下:



















所以的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是,當(dāng)時,取極小值,當(dāng)時,取極大值,(2)及(1)知,當(dāng)時,,當(dāng)時,設(shè)集合,集合對于任意的,都存在,使得等價于.顯然.

下面分三種情況討論:

當(dāng)時,由可知,所以A不是B的子集

當(dāng)時,有且此時上單調(diào)遞減,故,因而上的取值范圍包含,所以

當(dāng)時,有且此時上單調(diào)遞減,故,,所以A不是B的子集

綜上,的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)為,,若圓Q方程,且圓心Q在橢圓上.

1)求橢圓的方程;

2)已知直線交橢圓A、B兩點(diǎn),過直線上一動點(diǎn)P作與垂直的直線交圓QC、D兩點(diǎn),M為弦CD中點(diǎn),的面積是否為定值?若為定值,求出此定值;若不為定值,說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,

(1)設(shè)相交于點(diǎn),,且平面,求實(shí)數(shù)的值;

(2)若,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若內(nèi)單調(diào)遞減,求實(shí)數(shù)的取值范圍;

(Ⅱ)若函數(shù)有兩個極值點(diǎn)分別為,,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求的直角坐標(biāo)方程;

2)若有且僅有三個公共點(diǎn),求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列A: , ,… ().如果對小于()的每個正整數(shù)都有 ,則稱是數(shù)列A的一個“G時刻”.是數(shù)列A的所有“G時刻組成的集合.

(1)對數(shù)列A:-2,2,-1,1,3,寫出的所有元素;

(2)證明:若數(shù)列A中存在使得>,則

(3)證明:若數(shù)列A滿足- ≤1(n=2,3, …,N),的元素個數(shù)不小于 -.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于曲線C所在平面上的定點(diǎn),若存在以點(diǎn)為頂點(diǎn)的角,使得對于曲線C上的任意兩個不同的點(diǎn)A,B恒成立,則稱角為曲線C相對于點(diǎn)界角,并稱其中最小的界角為曲線C相對于點(diǎn)確界角.曲線相對于坐標(biāo)原點(diǎn)確界角的大小是 _________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記不等式組 ,表示的平面區(qū)域?yàn)?/span> .下面給出的四個命題: ; ; ; 其中真命題的是:

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某民航部門統(tǒng)計的2019年春運(yùn)期間12個城市售出的往返機(jī)票的平均價格以及相比上年同期變化幅度的數(shù)據(jù)統(tǒng)計圖表如圖所示,根據(jù)圖表,下面敘述正確的是( )

A. 同去年相比,深圳的變化幅度最小且廈門的平均價格有所上升

B. 天津的平均價格同去年相比漲幅最大且2019年北京的平均價格最高

C. 2019年平均價格從高到低居于前三位的城市為北京、深圳、廣州

D. 同去年相比,平均價格的漲幅從高到低居于前三位的城市為天津、西安、南京

查看答案和解析>>

同步練習(xí)冊答案