【題目】選修4-4:坐標系與參數(shù)方程:
已知極坐標系的極點在直角坐標系的原點,極軸與x軸非負半軸重合,直線l的參數(shù)方程為:(t為參數(shù),a∈[0,π),曲線C的極坐標方程為:p=2cosθ.
(Ⅰ)寫出曲線C在直角坐標系下的標準方程;
(Ⅱ)設(shè)直線l與曲線C相交PQ兩點,若|PQ|,求直線l的斜率.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點。
(1)寫出直線l的普通方程和曲線C的直角坐標方程:
(2)若成等比數(shù)列,求a的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一場小型晚會有個唱歌節(jié)目和個相聲節(jié)目,要求排出一個節(jié)目單.
(1)個相聲節(jié)目要排在一起,有多少種排法?
(2)個相聲節(jié)目彼此要隔開,有多少種排法?
(3)第一個節(jié)目和最后一個節(jié)目都是唱歌節(jié)目,有多少種排法?
(4)前個節(jié)目中要有相聲節(jié)目,有多少種排法?
(要求:每小題都要有過程,且計算結(jié)果都用數(shù)字表示)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知長方體中,底面ABCD的長AB=4,寬BC=4,高=3,點M,N分別是BC,的中點,點P在上底面中,點Q在上,若,則PQ長度的最小值是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正四棱椎P-ABCD中,底面ABCD的邊長為2,側(cè)棱長為.
(I)若點E為PD上的點,且PB∥平面EAC.試確定E點的位置;
(Ⅱ)在(I)的條件下,點F為線段PA上的一點且,若平面AEC和平面BDF所成的銳二面角的余弦值為,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某市高三數(shù)學復習備考情況,該市教研機構(gòu)組織了一次檢測考試,并隨機抽取了部分高三理科學生數(shù)學成績繪制如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估計該市此次檢測理科數(shù)學的平均成績;(精確到個位)
(2)研究發(fā)現(xiàn),本次檢測的理科數(shù)學成績近似服從正態(tài)分布(,約為),按以往的統(tǒng)計數(shù)據(jù),理科數(shù)學成績能達到自主招生分數(shù)要求的同學約占.
(。估計本次檢測成績達到自主招生分數(shù)要求的理科數(shù)學成績大約是多少分?(精確到個位)
(ⅱ)從該市高三理科學生中隨機抽取人,記理科數(shù)學成績能達到自主招生分數(shù)要求的人數(shù)為,求的分布列及數(shù)學期望.(說明:表示的概率.參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學生上個月A,B兩種移動支付方式的使用情況,從全校所有的1000名學生中隨機抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學生的支付金額分布情況如下:
支付金額 支付方式 | 不大于2000元 | 大于2000元 |
僅使用A | 27人 | 3人 |
僅使用B | 24人 | 1人 |
(Ⅰ)估計該校學生中上個月A,B兩種支付方式都使用的人數(shù);
(Ⅱ)從樣本僅使用B的學生中隨機抽取1人,求該學生上個月支付金額大于2000元的概率;
(Ⅲ)已知上個月樣本學生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用B的學生中隨機抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結(jié)合(Ⅱ)的結(jié)果,能否認為樣本僅使用B的學生中本月支付金額大于2000元的人數(shù)有變化?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com