分析 (1)設(shè)f(x)=x2+2x+n,根據(jù)△=0求出n即可;
(2)根據(jù)定積分的幾何意義列方程解出t.
解答 解:(1)∵f'(x)=2x+2,∴f(x)=x2+2x+n(n為常數(shù)),
∵f(x)=0有兩個(gè)相等的實(shí)根,∴4-4n=0,即n=1,
∴f(x)=x2+2x+1.
(2)f(x)與x軸的交點(diǎn)為(-1,0),與y軸的交點(diǎn)為(0,1),
∴y=f(x)的圖象與兩條坐標(biāo)軸所圍成的圖形面積S=${∫}_{-1}^{0}$(x2+2x+1)dx=($\frac{{x}^{3}}{3}+{x}^{2}+x$)${|}_{-1}^{0}$=$\frac{1}{3}$,
∵直線x=-t(0<t<1)把y=f(x)的圖象與兩條坐標(biāo)軸所圍成的圖形分成面積相等的兩部分,
∴${∫}_{-t}^{0}$(x2+2x+1)dx=$\frac{1}{6}$,即$\frac{1}{3}$t3-t2+t=$\frac{1}{6}$,∴2(t-1)3=-1,∴t=1-$\frac{1}{\root{3}{2}}$.
點(diǎn)評 本題主要考查用待定系數(shù)法求函數(shù)的解析式,導(dǎo)數(shù)的運(yùn)算,定積分的應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\frac{3}{2}$ | C. | $\sqrt{2}+1$ | D. | $\frac{{\sqrt{2}+1}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | π | D. | $\frac{4π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $-\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | $-\frac{π}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com