分析 (1)由|b+2|-|2-b|≤|b+2+2-b|=4,當(dāng)且僅當(dāng)b≥2時(shí)等號(hào)成立,4=|b+2+2-b|≤|b+2|+|2-b|,當(dāng)且僅當(dāng)-2≤b≤2時(shí)等號(hào)成立,即可求a的值;
(2)作差,利用基本不等式,即可證明結(jié)論.
解答 (1)解:|b+2|-|2-b|≤|b+2+2-b|=4,當(dāng)且僅當(dāng)b≥2時(shí)等號(hào)成立,4=|b+2+2-b|≤|b+2|+|2-b|,
當(dāng)且僅當(dāng)-2≤b≤2時(shí)等號(hào)成立,
∵對(duì)任意實(shí)數(shù)b,不等式|b+2|-|b-2|≤a≤|b+2|+|2-b|都成立.
∴a=4.
(2)證明:$2x+\frac{1}{{{x^2}-2xy+{y^2}}}-2y=(x-y)+(x-y)+\frac{1}{{{{(x-y)}^2}}}$,
∵x>y>0,∴$(x-y)+\;(x-y)\;+\frac{1}{{{{(x-y)}^2}}}≥3\root{3}{{(x-y)\;•\;(x-y)\;•\;\frac{1}{{{{(x-y)}^2}}}}}=3$,當(dāng)且僅當(dāng)x=y+1時(shí)等號(hào)成立,
∴$2x+\frac{1}{{{x^2}-2xy+{y^2}}}-2y≥3$,
即$2x-2y+\frac{1}{{{x^2}-2xy+{y^2}}}≥a-1$.
點(diǎn)評(píng) 本題考查絕對(duì)值不等式的性質(zhì),考查基本不等式的運(yùn)用,正確變形是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 三角形 | B. | 四邊形 | C. | 五邊形 | D. | 六邊形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{π}{2}$ | 2π | $\frac{7π}{2}$ | 5π | $\frac{13π}{2}$ |
f(x) | 0 | 2 | 0 | -2 | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{3}-5$ | B. | $2\sqrt{3}-2$ | C. | $5\sqrt{3}+1$ | D. | $2\sqrt{3}+1$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com