14.已知點(diǎn)A(-3,-$\frac{{\sqrt{6}}}{2}$)是拋物線C:y2=2px(p>0)準(zhǔn)線上的一點(diǎn),點(diǎn)F是C的焦點(diǎn),點(diǎn)P在C上且滿足|PF|=m|PA|,當(dāng)m取最小值時(shí),點(diǎn)P恰好在以原點(diǎn)為中心,F(xiàn)為焦點(diǎn)的雙曲線上,則該雙曲線的離心率為( 。
A.3B.$\frac{3}{2}$C.$\sqrt{2}+1$D.$\frac{{\sqrt{2}+1}}{2}$

分析 過P作準(zhǔn)線的垂線,垂足為N,則由拋物線的定義,結(jié)合||PF|=m|PA|,可得$\frac{|PN|}{|PA|}$=m,設(shè)PA的傾斜角為α,則當(dāng)m取得最小值時(shí),cosα最小,此時(shí)直線PA與拋物線相切,求出P的坐標(biāo),利用雙曲線的定義,即可求得雙曲線的離心率.

解答 解:點(diǎn)A(-3,-$\frac{{\sqrt{6}}}{2}$)是拋物線C:y2=2px(p>0)
準(zhǔn)線x=-$\frac{p}{2}$上的一點(diǎn),
可得-$\frac{p}{2}$=-3,即p=6,
則拋物線的標(biāo)準(zhǔn)方程為y2=12x,
則拋物線的焦點(diǎn)為F(3,0),準(zhǔn)線方程為x=-3,
過P作準(zhǔn)線的垂線,垂足為N,
則由拋物線的定義可得|PN|=|PF|,
∵|PF|=m|PA|,
∴|PN|=m|PA|,則$\frac{|PN|}{|PA|}$=m,
設(shè)PA的傾斜角為α,則cosα=m,
當(dāng)m取得最小值時(shí),cosα最小,此時(shí)直線PA與拋物線相切,
設(shè)直線PA的方程為y=kx+3k-$\frac{\sqrt{6}}{2}$,代入y2=12x,
可得$\frac{k}{12}$y2-y+3k-$\frac{\sqrt{6}}{2}$=0,
∴△=1-4•$\frac{k}{12}$•(3k-$\frac{\sqrt{6}}{2}$)=0,
∴k=$\frac{\sqrt{6}}{2}$或-$\frac{\sqrt{6}}{3}$,
可得切點(diǎn)P(2,±2$\sqrt{6}$),
由題意可得雙曲線的焦點(diǎn)為(-3,0),(3,0),
∴雙曲線的實(shí)軸長(zhǎng)為$\sqrt{(2+3)^{2}+(2\sqrt{6})^{2}}$-$\sqrt{(2-3)^{2}+(2\sqrt{6})^{2}}$=7-5=2,
∴雙曲線的離心率為e=$\frac{2c}{2a}$=$\frac{2×3}{2}$=3.
故選:A.

點(diǎn)評(píng) 本題考查拋物線的性質(zhì),考查雙曲線、拋物線的定義,考查學(xué)生分析解決問題的能力,解答此題的關(guān)鍵是明確當(dāng)m取得最小值時(shí),cosα最小,此時(shí)直線PA與拋物線相切,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若4<x<7,則式子$\root{4}{{{{(x-4)}^4}}}+\root{4}{{{{(x-7)}^4}}}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知四棱錐S-ABCD的底面為平行四邊形,且SD⊥平面ABCD,AB=2AD=2SD,∠DCB=60°,M,N分別為SB,SC的中點(diǎn),過MN作平面MNPQ分別與線段CD,AB相交于點(diǎn)P,Q,且$\overrightarrow{AQ}=λ\overrightarrow{AB}$.
(1)當(dāng)$λ=\frac{1}{2}$時(shí),證明:平面MNPQ∥平面SAD;
(2)是否存在實(shí)數(shù)λ,使得二面角M-PQ-B為60°?若存在,求出λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知角α的終邊在直線$y=-\sqrt{3}x$上,
(1)求tanα,并寫出與α終邊相同的角的集合S;
(2)求值$\frac{{\sqrt{3}sin({α-π})+5cos({2π-α})}}{{-\sqrt{3}cos({\frac{3π}{2}+α})+cos({π+α})}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)y=f(x)是二次函數(shù),方程f(x)=0有兩個(gè)相等的實(shí)根,且f'(x)=2x+2.
(1)求y=f(x)的表達(dá)式;
(2)若直線x=-t(0<t<1)把y=f(x)的圖象與兩條坐標(biāo)軸所圍成的圖形分成面積相等的兩部分,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知點(diǎn)A(0,-2),橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2},F(xiàn)$,是橢圓E的右焦點(diǎn),直線AF的斜率為2,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過點(diǎn)A動(dòng)直線l與E相交于P,Q兩點(diǎn),當(dāng)OP⊥OQ時(shí),求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.曲線y=ex+1在點(diǎn)A(0,2)處的切線斜率為(  )
A.1B.2C.eD.$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)$f(x)=2sin({ωx-\frac{π}{6}})\;({ω>0})$的最小正周期為4π,當(dāng)f(x)取得最小值時(shí),x的取值集合為( 。
A.$\left\{{x\left|{x=4kπ-\frac{2π}{3}\;,\;k∈Z}\right.}\right\}$B.$\left\{{x\left|{x=4kπ+\frac{2π}{3}\;,\;k∈Z}\right.}\right\}$
C.$\left\{{x\left|{x=4kπ-\frac{π}{3}\;,\;k∈Z}\right.}\right\}$D.$\left\{{x\left|{x=4kπ+\frac{π}{3}\;,\;k∈Z}\right.}\right\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.直線y=x+1被橢圓$\frac{x^2}{4}+\frac{y^2}{2}=1$所截得的弦的中點(diǎn)坐標(biāo)是$(-\frac{2}{3},\frac{1}{3})$.

查看答案和解析>>

同步練習(xí)冊(cè)答案