2.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-2y≥0\\ x+y≥0\\ 2x+y≤1.\end{array}\right.$則z=x+2y的最小值為( 。
A.5B.3C.1D.-1

分析 約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案

解答 解:由約束條件得到可行域如圖:目標(biāo)函數(shù)經(jīng)過(guò)圖中A時(shí)最小,由$\left\{\begin{array}{l}{x+y=0}\\{2x+y=1}\end{array}\right.$得到A(1,-1),
所以z=x+2y的最小值為1-2=-1;
故選:D.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在△ABC中,sinA+sinC=psinB(p∈R),且ac=$\frac{1}{4}$b2
(Ⅰ)當(dāng)p=$\frac{5}{4}$,b=1時(shí),求a,c的值;
(Ⅱ)若角B為銳角,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知數(shù)列{an}是等差數(shù)列,若它的前n項(xiàng)和Sn有最小值,且$\frac{{a}_{2012}}{{a}_{2011}}$<-1,則使Sn>0成立的最小自然數(shù)n的值為( 。
A.4022B.2022C.4021D.2021

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.用分?jǐn)?shù)指數(shù)冪表示$\sqrt{{a^{\frac{1}{2}}}\sqrt{{a^{\frac{1}{2}}}\sqrt{a}}}$(a>0)其結(jié)果是(  )
A.aB.${a^{\frac{1}{2}}}$C.${a^{\frac{1}{4}}}$D.${a^{\frac{1}{6}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.對(duì)于函數(shù)f(x)=a-$\frac{2}{{{2^x}+1}}$(a∈R)
(Ⅰ)探索函數(shù)f(x)的單調(diào)性;
(Ⅱ)是否存在實(shí)數(shù)a,使函數(shù)f(x)為奇函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某大學(xué)新聞系有男生45名,女生15名,按照分層抽樣的方法組建了一個(gè)4人的青奧會(huì)采訪小組.
(1)求某學(xué)生被抽到的概率及采訪小組中男、女生的人數(shù);
(2)經(jīng)過(guò)半個(gè)月的實(shí)地采訪,這個(gè)采訪小組決定選出2名學(xué)生做后期整理編輯,方法是先從小組里選出1名學(xué)生對(duì)信息分類,該學(xué)生整理結(jié)束,再?gòu)男〗M內(nèi)剩下的學(xué)生中選1名做后期剪輯,求選出的2名學(xué)生中恰有1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.用二分法求方程的近似根,精確度為δ,用直到型循環(huán)結(jié)構(gòu)的終止條件是(  )
A.|x1-x2|>δB.|x1-x2|<δC.x1<δ<x2D.x1=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知f(x)=2sinxcosx+sin2x-cos2x,
(1)求f(x)的最小正周期;
(2)求f(x)的最大值及相應(yīng)x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.某空間幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$2\sqrt{3}$B.$4\sqrt{3}$C.$\frac{{2\sqrt{3}}}{3}$D.$\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案