3.已知直線l垂直于直線3x-4y+10=0,直線l與兩坐標(biāo)軸圍成的三角形的周長為5,求直線l的方程.

分析 設(shè)直線l的方程為:4x+3y+b=0.與x,y軸分別相交于點A$(-\frac{4},0)$,B$(0,-\frac{3})$.利用|OA|+|OB|+|AB|=5,即可得出.

解答 解:設(shè)直線l的方程為:4x+3y+b=0.與x,y軸分別相交于點A$(-\frac{4},0)$,B$(0,-\frac{3})$.
∴|AB|=$\frac{5}{12}$|b|,
∴|OA|+|OB|+|AB|=5,可得$\frac{|b|}{4}$+$\frac{|b|}{3}$+$\frac{5}{12}$|b|=5,解得b=±5.
∴直線l的方程為:4x+3y±5=0.

點評 本題考查了相互垂直的直線斜率之間的關(guān)系、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)滿足$2f({\frac{x-1}{x}})+f({\frac{x+1}{x}})=1+x$,其中x∈R且x≠0,則函數(shù)f(x)的解析式為f(x)=$\frac{1}{3}$-$\frac{1}{x-1}$(x≠1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知空間中點A(x,1,2)和點B(2,3,4),且$|{AB}|=2\sqrt{6}$,則實數(shù)x的值是( 。
A.6或-2B.-6或2C.3或-4D.-3或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知直線y=x+b與橢圓$\frac{{x}^{2}}{2}$+y2=1相交于A,B兩個不同的點.
(1)求實數(shù)b的取值范圍;
(2)已知弦AB的中點P的橫坐標(biāo)是$-\frac{2}{3}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.兩等角的一組對應(yīng)邊平行,則另一組對應(yīng)邊的位置關(guān)系為平行、相交或異面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列說法中,正確的是(  )
A.命題“若am2<bm2,則a<b”的逆命題是真命題
B.命題“若x=y,則sinx=siny”的逆否命題為真命題
C.命題“p或q”為真命題,則命題“p”和命題“q”均為真命題
D.若p∧q為假命題,則p、q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|x-1|;
(1)用分段函數(shù)表示出f(x)的解析式;
(2)畫出f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.給出下列語句:
①若a,b∈R+,a≠b,則a3+b3>a2b+ab2;
②若a,b,m∈R+,a<b,則$\frac{a+m}{b+m}$<$\frac{a}$;
③命題:若x2=1,則x=1或x=-1的逆否命題為:若x≠1且x≠-1,則x2≠1.
④當(dāng)x∈(0,$\frac{π}{2}$)時,sin x+$\frac{2}{sinx}$的最小值為2$\sqrt{2}$,
其中結(jié)論正確的序號為①③(填入所有正確的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知集合A={x|2a≤x≤a+3},B={x|x<-1或x>1}
(Ⅰ)若a=0,求A∩B;
(Ⅱ)若A∪B=R,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案