【題目】放射性元素由于不斷有原子放射出微粒子而變成其他元素,其含量不斷減少,這種現(xiàn)象稱為衰變.假設在放射性同位素銫137的衰變過程中,其含量M(單位:太貝克)與時間t(單位:年)滿足函數(shù)關(guān)系:M(t)=M0 ,其中M0為t=0時銫137的含量.已知t=30時,銫137含量的變化率是﹣10In2(太貝克/年),則M(60)=( )
A.5太貝克
B.75In2太貝克
C.150In2太貝克
D.150太貝克
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2x,g(x)=x2+ax(其中a∈R).對于不相等的實數(shù)x1,x2,設m=,n=.現(xiàn)有如下命題:
①對于任意不相等的實數(shù)x1,x2,都有m>0;
②對于任意的a及任意不相等的實數(shù)x1,x2,都有n>0;
③對于任意的a,存在不相等的實數(shù)x1,x2,使得m=n;
④對于任意的a,存在不相等的實數(shù)x1,x2,使得m=-n.
其中的真命題有________(寫出所有真命題的序號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖y=f(x)的導函數(shù)的圖象,現(xiàn)有四種說法:
(1)f(x)在(﹣3,1)上是增函數(shù);
(2)x=﹣1是f(x)的極小值點;
(3)f(x)在(2,4)上是減函數(shù),在(﹣1,2)上是增函數(shù);
(4)x=2是f(x)的極小值點;
以上正確的序號為( )
A.(1)(2)
B.(2)(3)
C.(3)(4)
D.(4)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知復數(shù)z=(2m2+3m﹣2)+(m2+m﹣2)i,(m∈R)根據(jù)下列條件,求m值.
(1)z是實數(shù);
(2)z是虛數(shù);
(3)z是純虛數(shù);
(4)z=0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=
(1)當x≤0時,解不等式f(x)≥﹣1;
(2)寫出該函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)g(x)=f(x)﹣m恰有3個不同零點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1
(1)求f(1)、f( )的值;
(2)若滿足f(x)+f(x﹣8)≤2,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校擬建一塊周長為400m的操場如圖所示,操場的兩頭是半圓形,中間區(qū)域是矩形,學生做操一般安排在矩形區(qū)域,為了能讓學生的做操區(qū)域盡可能大,試問如何設計矩形的長和寬?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地教育研究中心為了調(diào)查該地師生對“高考使用全國統(tǒng)一命題的試卷”這一看法,對該市區(qū)部分師生進行調(diào)查,先將調(diào)查結(jié)果統(tǒng)計如下:
贊成 | 反對 | 總計 | |
教師 | 120 | ||
學生 | 40 | ||
總計 | 280 | 120 |
(1)請將表格補充完整,若該地區(qū)共有教師30000人,以頻率為概率,試估計該地區(qū)教師反對“高考使用全國統(tǒng)一命題的試卷”這一看法的人數(shù);
(2)按照分層抽樣從“反對”的人中先抽取6人,再從中隨機選出3人進行深入調(diào)研,求深入調(diào)研中恰有1名學生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com