16.命題p:若x≠0或y≠0,則x2+y2≠0,如果把命題p視為原命題,那么原命題、逆命題、否命題、逆否命題四個(gè)命題中正確命題的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

分析 判斷原命題和逆命題的真假,進(jìn)而根據(jù)互為逆否的兩個(gè)命題真假性相同,可得答案.

解答 解:命題p:若x≠0或y≠0,則x2+y2≠0,為真命題,
故其逆否命題也為真命題;
其逆命題:若x2+y2≠0,則x≠0或y≠0,為真命題,
故其否命題也為真命題;
故選:D

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了四種命題,難度基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.有一段演繹推理:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線a?平面α,直線b∥平面α,則b∥a”的結(jié)論顯然是錯(cuò)誤的,這是因?yàn)椋ā 。?table class="qanwser">A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.非以上錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)$f(x)=\left\{\begin{array}{l}\frac{2}{x},x≥2\\{(x-1)^3},x<2\end{array}\right.$,若關(guān)于x的方程f(x)+k=0有兩個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍是(  )
A.(0,1)B.[0,1]C.(-1,0)D.[-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)隨機(jī)變量ξ的分布列為如表所表示,則b等于(  )
ξ0123
P0.10.4b0.1
A.0.1B.0.2C.0.3D.0.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.拋物線x2=8y的焦點(diǎn)坐標(biāo)是( 。
A.(0,$\frac{1}{32}$)B.($\frac{1}{32}$,0)C.(2,0)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在公差為d,各項(xiàng)均為正整數(shù)的等差數(shù)列{an}中,若a1=1,an=51,則n+d的最小值為( 。
A.14B.16C.18D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,∠A,∠B,∠C的大小成等差數(shù)列,且a=1,$b=\sqrt{3}$.則∠A的大小為(  )
A.$\frac{π}{6}$或$\frac{5π}{6}$B.$\frac{π}{3}$或$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求f(x)的解析式; 
(2)函數(shù)g(x)=sinx的圖象怎么變換可以得到函數(shù)f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.直線l將圓x2+y2-2x-4y=0平分,且與直線x+2y=0平行,直線l的方程為( 。
A.2x-y=0B.2x-y-2=0C.x+2y-3=0D.x+2y-5=0

查看答案和解析>>

同步練習(xí)冊(cè)答案