1.在公差為d,各項(xiàng)均為正整數(shù)的等差數(shù)列{an}中,若a1=1,an=51,則n+d的最小值為( 。
A.14B.16C.18D.10

分析 由等差數(shù)列通項(xiàng)公式得到d=$\frac{50}{n-1}$,由等差數(shù)列的各項(xiàng)均為正整數(shù),得到d只能是1,2,5,10,25,50,n相應(yīng)取得51,26,11,6,3,2,由此能求出n+d的最小值.

解答 解:由a1=1,得到an=a1+(n-1)d=1+(n-1)d=51,
即(n-1)d=50,
解得:d=$\frac{50}{n-1}$,
因?yàn)榈炔顢?shù)列的各項(xiàng)均為正整數(shù),所以公差d也為正整數(shù),
因此d只能是1,2,5,10,25,50,
此時(shí)n相應(yīng)取得51,26,11,6,3,2,
則n+d的最小值等于16.
故選:B.

點(diǎn)評(píng) 本題考查等差數(shù)列的項(xiàng)數(shù)與公差的和的最小值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的上頂點(diǎn)M與左、右焦點(diǎn)F1,F(xiàn)2構(gòu)成三角形MF1F2面積為$\sqrt{3}$,又橢圓C的離心率為$\frac{{\sqrt{3}}}{2}$,左右頂點(diǎn)分別為P,Q.
(1)求橢圓C的方程;
(2)過點(diǎn)D(m,0)(m∈(-2,2),m≠0)作兩條射線分別交橢圓C于A,B兩點(diǎn)(A,B在長(zhǎng)軸PQ同側(cè)),直線AB交長(zhǎng)軸于點(diǎn)S(n,0),且有∠ADP=∠BDQ.求證:mn為定值;
(3)橢圓C的下頂點(diǎn)為N,過點(diǎn)T(t,2)(t≠0)的直線TM,TN分別與橢圓C交于E,F(xiàn)兩點(diǎn).若△TMN的面積是△TEF的面積的λ倍,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某重點(diǎn)高中擬把學(xué)校打造成新型示范高中,為此制定了學(xué)生“七不準(zhǔn)”,“一日三省十問”等新的規(guī)章制度.新規(guī)章制度實(shí)施一段時(shí)間后,學(xué)校就新規(guī)章制度隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,調(diào)查卷共有10個(gè)問題,每個(gè)問題10分,調(diào)查結(jié)束后,按分?jǐn)?shù)分成5組:[50,60),[50,60),[50,60),[50,60),[50,60),并作出頻率分布直方圖與樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[50,60)的數(shù)據(jù)).
(Ⅰ)求樣本容量[50,60)和頻率分布直方圖中的[50,60)、[50,60)的值;
(Ⅱ)在選取的樣本中,從分?jǐn)?shù)在70分以下的學(xué)生中隨機(jī)抽取3名學(xué)生進(jìn)行座談會(huì),求所抽取的3名學(xué)生中恰有1人得分在[50,60)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知拋物線E:y2=4x的焦點(diǎn)是F,過點(diǎn)F的直線l與拋物線E相交于A,B兩點(diǎn),O為原點(diǎn).
(Ⅰ)若直線l的斜率為1,求$\overrightarrow{OA}•\overrightarrow{OB}$的值;
(Ⅱ)設(shè)$\overrightarrow{FB}$=t$\overrightarrow{AF}$,若t∈[2,4],求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.命題p:若x≠0或y≠0,則x2+y2≠0,如果把命題p視為原命題,那么原命題、逆命題、否命題、逆否命題四個(gè)命題中正確命題的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵(lì)全市30萬居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過x的部分按平價(jià)收費(fèi),超過x的部分按議價(jià)收費(fèi),并希望約80%的居民每月的用水量不超過標(biāo)準(zhǔn)x(噸).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中a的值,并估計(jì)全市居民中月均用量不低于3噸的人數(shù);
(2)若每組內(nèi)部,用水量視為均勻分布,估計(jì)x的值(精確到0.1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若以等邊三角形ABC的頂點(diǎn)A,B為焦點(diǎn)的雙曲線恰好過BC的中點(diǎn),則雙曲線的離心率為(  )
A.$\sqrt{2}$B.2C.$\sqrt{3}$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.交通指數(shù)是交通擁堵指數(shù)的簡(jiǎn)稱,是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為T,其范圍分為五個(gè)級(jí)別,T∈[0,2)暢通;T∈[2,4)基本暢通;  T∈[4,6)輕度擁堵;T∈[6,8)中度擁堵;T∈[8,10]嚴(yán)重?fù)矶拢绺叻鍟r(shí)段(T≥3),從某市交通指揮中心隨機(jī)選取了三環(huán)以內(nèi)的50個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如圖.
(Ⅰ)這50個(gè)路段為中度擁堵的有多少個(gè)?
(Ⅱ)據(jù)此估計(jì),早高峰三環(huán)以內(nèi)的三個(gè)路段至少有一個(gè)是嚴(yán)重?fù)矶碌母怕适嵌嗌伲?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AB=AC,D,D1分別是線段BC,B1C1的中點(diǎn),P是線段AD上異于端點(diǎn)的點(diǎn).
(1)在平面ABC內(nèi),試作出過點(diǎn)P與平面A1BC平行的直線l,并說明理由;
(2)證明:直線l⊥平面ADD1A1

查看答案和解析>>

同步練習(xí)冊(cè)答案