6.有一段演繹推理:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線a?平面α,直線b∥平面α,則b∥a”的結(jié)論顯然是錯(cuò)誤的,這是因?yàn)椋ā 。?table class="qanwser">A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.非以上錯(cuò)誤

分析 分析該演繹推理的三段論,即可得出錯(cuò)誤的原因是什么.

解答 解:該演繹推理的大前提是:若直線平行于平面,則該直線平行于平面內(nèi)所有直線;
小前提是:已知直線b∥平面α,直線a?平面α;
結(jié)論是:直線b∥直線a;
該結(jié)論是錯(cuò)誤的,因?yàn)榇笄疤崾清e(cuò)誤的,
正確敘述是“若直線平行于平面,過該直線作平面與已知平面相交,則交線與該直線平行”.
故選:A.

點(diǎn)評(píng) 本題通過演繹推理的三段論敘述,考查了空間中線面垂直的性質(zhì)定理的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知p:x2-4x-5>0,q:x2-2x+1-λ2>0,若p是q的充分不必要條件,則正實(shí)數(shù)λ的取值范圍是( 。
A.(0,1]B.(0,2)C.$({0,\frac{3}{2}}]$D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.巴西世界杯足球賽正在如火如荼進(jìn)行.某人為了了解我校學(xué)生“通過電視收看世界杯”是否與性別有關(guān),從全校學(xué)生中隨機(jī)抽取30名學(xué)生進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:
男生女生合計(jì)
收看10
不收看8
合計(jì)30
已知在這30名同學(xué)中隨機(jī)抽取1人,抽到“通過電視收看世界杯”的學(xué)生的概率是$\frac{8}{15}$.
(I)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并據(jù)此資料分析在犯錯(cuò)誤概率不超過0.01的前提下“通過電視收看世界杯”與性別是否有關(guān)?
(II)若從這30名同學(xué)中的男同學(xué)中隨機(jī)抽取2人參加一活動(dòng),記“通過電視收看世界杯”的人數(shù)為X,求X的分布列和均值.
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(c+a)(b+d)}$,n=a+b+c+d)
P(K2>k0  0.1000.0500.010
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知在映射f下,(x,y)的象是(x+y,x-y),則元素(3,1)的原象為(  )
A.(1,2)B.(2,1)C.(-1,2)D.(-2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=(sinx+cosx)2+2cos2x
(1)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間;
(2)求使f(x)≥3成立的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的上頂點(diǎn)M與左、右焦點(diǎn)F1,F(xiàn)2構(gòu)成三角形MF1F2面積為$\sqrt{3}$,又橢圓C的離心率為$\frac{{\sqrt{3}}}{2}$,左右頂點(diǎn)分別為P,Q.
(1)求橢圓C的方程;
(2)過點(diǎn)D(m,0)(m∈(-2,2),m≠0)作兩條射線分別交橢圓C于A,B兩點(diǎn)(A,B在長軸PQ同側(cè)),直線AB交長軸于點(diǎn)S(n,0),且有∠ADP=∠BDQ.求證:mn為定值;
(3)橢圓C的下頂點(diǎn)為N,過點(diǎn)T(t,2)(t≠0)的直線TM,TN分別與橢圓C交于E,F(xiàn)兩點(diǎn).若△TMN的面積是△TEF的面積的λ倍,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知在三棱柱ABC-A1B1C1中,B1B⊥平面ABC,∠ABC=90°,B1B=AB=2BC=4,D、E分別是B1C1,A1A的中點(diǎn).
(1)求證:A1D∥平面B1CE;
(2)設(shè)M是的中點(diǎn),N在棱AB上,且BN=1,P是棱AC上的動(dòng)點(diǎn),直線NP與平面MNC所成角為θ,試問:θ的正弦值存在最大值嗎?若存在,請(qǐng)求出$\frac{AP}{AC}$的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)=sin\frac{πx}{2}({x∈R})$.任取t∈R,若函數(shù)f(x)在區(qū)間[t,t+1]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t).
(1)求函數(shù)f(x)的最小正周期及對(duì)稱軸方程;
(2)當(dāng)t∈[-2,0]時(shí),求函數(shù)g(t)的解析式;
(3)設(shè)函數(shù)h(x)=2|x-k|,H(x)=x|x-k|+2k-8,其中實(shí)數(shù)k為參數(shù),且滿足關(guān)于t的不等式$\sqrt{2}k-4g(t)≤0$有解,若對(duì)任意x1∈[4,+∞),存在x2∈(-∞,4],使得h(x2)=H(x1)成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.命題p:若x≠0或y≠0,則x2+y2≠0,如果把命題p視為原命題,那么原命題、逆命題、否命題、逆否命題四個(gè)命題中正確命題的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案