分析 (1)A,B兩棵樹的成活的概率均為$\frac{1}{2}$,另外兩棵樹C,D成活概率都為a(0<a<1),出現(xiàn)A,B有且只有一棵成活的概率與C,D都成活的概率相等,可得2×$\frac{1}{2}×(1-\frac{1}{2})$=a2.
(2)由題設(shè)知ξ的所有可能取值為0,1,2,3,4.P(ξ=0)=${∁}_{2}^{0}(1-\frac{1}{2})^{2}•$${∁}_{2}^{0}(1-\frac{2}{3})^{2}$,P(ξ=1)=${∁}_{2}^{1}×\frac{1}{2}×(1-\frac{1}{2})$×${∁}_{2}^{0}$×$(1-\frac{2}{3})^{2}$+${∁}_{2}^{0}(1-\frac{1}{2})^{2}$$•{∁}_{2}^{1}•\frac{2}{3}$×$(1-\frac{2}{3})$,P(ξ=3)=${∁}_{2}^{2}(\frac{1}{2})^{2}•{∁}_{2}^{1}$$•\frac{2}{3}×(1-\frac{2}{3})$+${∁}_{2}^{1}$×$\frac{1}{2}×(1-\frac{1}{2})$$•{∁}_{2}^{2}(\frac{2}{3})^{2}$.P(ξ=4)=${∁}_{2}^{2}(\frac{1}{2})^{2}•{∁}_{2}^{2}(\frac{2}{3})^{2}$,P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)-P(ξ=4).
解答 解:(1)∵A,B兩棵樹的成活的概率均為$\frac{1}{2}$,另外兩棵樹C,D成活概率都為a(0<a<1),
出現(xiàn)A,B有且只有一棵成活的概率與C,D都成活的概率相等,
∴2×$\frac{1}{2}×(1-\frac{1}{2})$=a2,∴a=$\frac{\sqrt{2}}{2}$.
(2)由題設(shè)知ξ的所有可能取值為0,1,2,3,4.
P(ξ=0)=${∁}_{2}^{0}(1-\frac{1}{2})^{2}•$${∁}_{2}^{0}(1-\frac{2}{3})^{2}$=$\frac{1}{36}$.
P(ξ=1)=${∁}_{2}^{1}×\frac{1}{2}×(1-\frac{1}{2})$×${∁}_{2}^{0}$×$(1-\frac{2}{3})^{2}$+${∁}_{2}^{0}(1-\frac{1}{2})^{2}$$•{∁}_{2}^{1}•\frac{2}{3}$×$(1-\frac{2}{3})$=$\frac{1}{6}$.
P(ξ=3)=${∁}_{2}^{2}(\frac{1}{2})^{2}•{∁}_{2}^{1}$$•\frac{2}{3}×(1-\frac{2}{3})$+${∁}_{2}^{1}$×$\frac{1}{2}×(1-\frac{1}{2})$$•{∁}_{2}^{2}(\frac{2}{3})^{2}$=$\frac{1}{3}$.
P(ξ=4)=${∁}_{2}^{2}(\frac{1}{2})^{2}•{∁}_{2}^{2}(\frac{2}{3})^{2}$=$\frac{1}{9}$.
P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)-P(ξ=4)=$\frac{13}{36}$.
可得分布列:
ξ | 0 | 1 | 2 | 3 | 4 |
P | $\frac{1}{36}$ | $\frac{1}{6}$ | $\frac{13}{36}$ | $\frac{1}{3}$ | $\frac{1}{9}$ |
點評 本題考查了隨機變量的概率計算公式及其數(shù)學(xué)期望、相互獨立與互斥事件的概率計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 120° | B. | 90° | C. | 60° | D. | 30° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{4}$ | B. | $\frac{5}{2}$ | C. | $\frac{7}{2}$ | D. | $\frac{7}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限角 | B. | 第二象限角 | C. | 第三象限角 | D. | 第四象限角 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com