A. | 0 | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
分析 由題意可得f(-x)=f(x),利用出公式可得:sinx$cos(θ+\frac{π}{3})$=0,上式對(duì)于任意實(shí)數(shù)x∈R都成立,可得cosθ=0,θ∈[-$\frac{π}{2}$,$\frac{π}{2}}]}$],即可得出.
解答 解:∵函數(shù)f(x)=sin(x+θ)+$\sqrt{3}$cos(x+θ)(θ∈[-$\frac{π}{2}$,$\frac{π}{2}}]}$])是偶函數(shù),
∴f(-x)=f(x),∴f(-x)=sin(-x+θ)+$\sqrt{3}$cos(-x+θ)=sin(x+θ)+$\sqrt{3}$cos(x+θ),
∴sinxcosθ+$\sqrt{3}$sinxsinθ=0,
∴2sinx$cos(θ+\frac{π}{3})$=0,
上式對(duì)于任意實(shí)數(shù)x∈R都成立,∴cosθ=0,θ∈[-$\frac{π}{2}$,$\frac{π}{2}}]}$],
∴$θ=\frac{π}{6}$.
故選:B.
點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性、和差公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 既不充分也不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 充分而不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{{\sqrt{2}}}{2},0$] | B. | [-1,0] | C. | [-$\sqrt{2},0$] | D. | [-$\sqrt{3},0$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 90° | D. | 45° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,2] | B. | (-∞,0] | C. | (-∞,0]∪[1,2] | D. | (-∞,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{8}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{12}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com