15.若集合P={x∈R|x>0},Q={x∈Z|(x+1)(x-4)<0},則P∩Q=( 。
A.(0,4)B.(4,+∞)C.{1,2,3}D.{1,2,3,4}

分析 先分別求出集合P和A,由此利用交集定義能求出P∩Q.

解答 解:∵集合P={x∈R|x>0},
Q={x∈Z|(x+1)(x-4)<0}={0,1,2,3},
∴P∩Q={1,2,3}.
故選:C.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,四邊形PDCE為矩形,四邊形ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=$\frac{1}{2}$CD=1.
(1)若M為PA中點(diǎn),求證:AC∥平面MDE;
(2)若平面PAD與PBC所成的銳二面角的大小為$\frac{π}{3}$,求線段PD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)點(diǎn)A(-$\sqrt{3}$,1),斜率為$\sqrt{3}$的直線l1過(guò)橢圓C的焦點(diǎn)及點(diǎn)B(0,-2$\sqrt{3}$).
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線l2過(guò)橢圓C的左焦點(diǎn)F,交橢圓C于點(diǎn)P、Q,若直線l2與兩坐標(biāo)軸都不垂直,試問(wèn)x軸上是否存在一點(diǎn)M,使得MF恰為∠PMQ的角平分線?若存在,求點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合M={x|x2=x},N={-1,0,1},則M∩N=(  )
A.{-1,0,1}B.{0,1}C.{1}D.{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,長(zhǎng)度為2的線段MN的一個(gè)端點(diǎn)M在棱DD1上運(yùn)動(dòng),另一個(gè)端點(diǎn)N在正方形ABCD內(nèi)運(yùn)動(dòng),則MN中點(diǎn)的軌跡與正方體ABCD-A1B1C1D1的表面所圍成的較小的幾何體的體積等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{(x-a)^2}+e,x≤2\\ \frac{x}{1nx}+a+10,x>2\end{array}$,(e是自然對(duì)數(shù)的底數(shù)),若f(2)是函數(shù)f(x)的最小值,則a的取值范圍是(  )
A.[-1,6]B.[1,4]C.[2,4]D.[2,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$經(jīng)過(guò)點(diǎn)$M(1,\frac{{2\sqrt{3}}}{3})$,離心率為$\frac{{\sqrt{3}}}{3}$.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)若A1,A2是橢圓E的左右頂點(diǎn),過(guò)點(diǎn)A2作直線l與x軸垂直,點(diǎn)P是橢圓E上的任意一點(diǎn)(不同于橢圓E的四個(gè)頂點(diǎn)),聯(lián)結(jié)PA;交直線l與點(diǎn)B,點(diǎn)Q為線段A1B的中點(diǎn),求證:直線PQ與橢圓E只有一個(gè)公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.關(guān)于x的不等式log2|1-x|>1的解集為{x|x<-1或x>3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.執(zhí)行如圖所示的程序框圖,如果輸出的結(jié)果為0,那么輸入的x為( 。
A.$\frac{1}{9}$B.-1或1C.-lD.l

查看答案和解析>>

同步練習(xí)冊(cè)答案