12.△ABC外接圓的半徑為1,圓心為O,$3\overrightarrow{OA}+4\overrightarrow{OB}+5\overrightarrow{OC}=\overrightarrow 0$,則$\overrightarrow{OC}•\overrightarrow{AB}$=-$\frac{1}{5}$.

分析 將已知等式移項,兩邊平方,得到$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,再將向量OC用向量OA,OB表示,代入所求式子,化簡即可得到.

解答 解:∵$3\overrightarrow{OA}+4\overrightarrow{OB}+5\overrightarrow{OC}=\overrightarrow 0$,
∴移項得3$\overrightarrow{OA}$+4$\overrightarrow{OB}$=-5$\overrightarrow{OC}$.
兩邊平方得,9${\overrightarrow{OA}}^{2}$+24$\overrightarrow{OA}$•$\overrightarrow{OB}$+16${\overrightarrow{OB}}^{2}$=25${\overrightarrow{OC}}^{2}$
∵O為△ABC的外接圓的圓心,
∴|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=1,
上式化簡為24$\overrightarrow{OA}$•$\overrightarrow{OB}$+=0,
∵$\overrightarrow{OC}$=-$\frac{1}{5}$(3$\overrightarrow{OA}$+4$\overrightarrow{OB}$),
∴$\overrightarrow{OC}•\overrightarrow{AB}$=-$\frac{1}{5}$(3$\overrightarrow{OA}$+4$\overrightarrow{OB}$)•($\overrightarrow{OB}$-$\overrightarrow{OA}$)=-$\frac{1}{5}$(4${\overrightarrow{OB}}^{2}$-3${\overrightarrow{OA}}^{2}$-$\overrightarrow{OA}$•$\overrightarrow{OB}$)=-$\frac{1}{5}$,
故答案為:-$\frac{1}{5}$.

點評 本題考查向量的加減和數(shù)量積運算,考查向量的數(shù)量積的性質(zhì)和平方法解題,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)y=x3-2x2+x+3,x∈[-1,2],求此函數(shù)的
(1)單調(diào)區(qū)間;
(2)值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知向量$\overrightarrow a=({1,2sinθ}),\overrightarrow b=({sin({θ+\frac{π}{3}}),1}),θ∈R$.
(1)若$\overrightarrow a⊥\overrightarrow b$,求tanθ的值;
(2)若$\overrightarrow a∥\overrightarrow b$,且$θ∈[{0,\frac{π}{2}}]$,求角θ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=$\sqrt{3}$cos4x+2sinxcosx-$\sqrt{3}$sin4x.
(1)當x∈[0,$\frac{π}{2}$]時,求f(x)的最大值、最小值以及取得最值時的x值;
(2)設(shè)g(x)=3-2m+mcos(2x-$\frac{π}{6}$)(m>0),若對于任意x1∈[0,$\frac{π}{4}$],都存在x2∈[0,$\frac{π}{4}$],使得f(x1)=g(x2)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點到右焦點的距離為$\sqrt{3}$+$\sqrt{2}$,橢圓上的點到右焦點的距離的最小值為$\sqrt{3}$-$\sqrt{2}$.
(1)求橢圓C的方程;
(2)設(shè)斜率為1的直線l經(jīng)過橢圓上頂點,并與橢圓交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)$f(x)=\frac{x+a}{{{x^2}+3{a^2}}}(a≠0,a∈R)$.
(1)設(shè)函數(shù)$g(x)=\frac{{{x^2}+12}}{x+2}{e^x}$,當a=-2時,討論y=f(x)g(x)的單調(diào)性,并證明當x>0時,(x-2)ex+x+2>0
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當a=1時,若對任意x1,x2∈[-3,+∞),有f(x1)-f(x2)≤m成立,求實數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設(shè)函數(shù)$f(x)=\frac{x^2}{2}-klnx$.
(1)若k∈R,求f(x)的單調(diào)區(qū)間;
(2)若k>0,討論f(x)當$x∈(1,\sqrt{e})$時的零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若函數(shù)f(x)=x2由x=1至x=1+△x的平均變化率的取值范圍是(1.975,2.025),則增量△x的取值范圍為( 。
A.(-0.025,0.025)B.(0,0.025)C.(0.025,1)D.(-0.025,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在△ABC中,∠C=90°,點M在邊BC上,且滿足BC=$\frac{3}{2}$CM,若tan∠BAM=$\frac{{\sqrt{6}}}{12}$,則sin∠MAC=$\frac{{\sqrt{10}}}{5}$.

查看答案和解析>>

同步練習冊答案