分析 根據平行四邊形法則,即可得到答案
解答 解:設$EG=λ\overrightarrow{EB},({λ∈[{0,1}]})$,
因為$\overrightarrow{AG}=\overrightarrow{AE}+\overrightarrow{EG}=\overrightarrow{AE}+λ\overrightarrow{EB}=\frac{1+λ}{2}\overrightarrow{AB}+({1-λ})\overrightarrow{AD}$,
所以$1-λ=y,\frac{1+λ}{2}=x$,
所以2x+y=2.
故答案為:2.
點評 本題考查了向量的平行四邊形法則,即向量的加法法則,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (2cosθ,2sinθ) | B. | (-2cosθ,2sinθ) | C. | (-2cosθ,-2sinθ) | D. | (2cosθ,-2sinθ) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{5}$ | B. | $\frac{3\sqrt{3}}{5}$ | C. | $\frac{\sqrt{3}}{19}$ | D. | $\frac{\sqrt{3}}{7}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com