分析 (1)由題意令x=y=0,可得f(0)=2f(0),解得f(0).令x=-y∈[-1,1],可得f(0)=f(x)+f(-x),即可證明f(x)為奇函數(shù).
(2)令-1≤x1≤x2≤1,則f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1)>0,即可證明單調(diào)性.
(3)f(x)在[-1,1]上單調(diào)遞增,kd f(x)≤f(1)=1,根據(jù)f(x)<m-2am+2,對(duì)所有x∈[-1,1],
a∈[-1,1]恒成立,可得1<m-2am+2,即g(a)=-2ma+m+1>0,對(duì)所有x∈[-1,1],a∈[-1,1]恒成立,看作關(guān)于a的一次函數(shù),利用單調(diào)性即可得出.
解答 (1)證明:∵對(duì)于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),
令x=y=0,可得f(0)=2f(0),解得f(0)=0.
令x=-y∈[-1,1],可得f(0)=f(x)+f(-x),解得f(-x)=-f(x).
因此f(x)為奇函數(shù).
(2)證明:令-1≤x1<x2≤1,則f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1)>0,
∴f(x2)>f(x1),∴f(x)在[-1,1]上單調(diào)遞增.
(3)解:f(x)在[-1,1]上單調(diào)遞增,∴f(x)≤f(1)=1,
∵f(x)<m-2am+2,對(duì)所有x∈[-1,1],a∈[-1,1]恒成立,
∴1<m-2am+2,即g(a)=-2ma+m+1>0,對(duì)所有x∈[-1,1],a∈[-1,1]恒成立,
看作關(guān)于a的一次函數(shù),則$\left\{\begin{array}{l}{2m+m+1>0}\\{-2m+m+1>0}\end{array}\right.$,解得$-\frac{1}{3}<m<1$.
∴實(shí)數(shù)m的取值范圍是$(-\frac{1}{3},1)$.
點(diǎn)評(píng) 本題考查了抽象函數(shù)的求值單調(diào)性奇偶性、解不等式,考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a,b,c中至少有兩個(gè)偶數(shù) | |
B. | a,b,c中至少有兩個(gè)偶數(shù)或都是奇數(shù) | |
C. | a,b,c都是奇數(shù) | |
D. | a,b,c都是偶數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2n | B. | $\frac{1}{n}$ | C. | $\sqrt{n}$ | D. | n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4}{15}$ | B. | $\frac{1}{15}$ | C. | $\frac{28}{45}$ | D. | $\frac{14}{45}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①③④ | B. | ②③④ | C. | ①②③ | D. | ①②③④ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com