【題目】已知雙曲線的左,右焦點分別為,,點P為雙曲線C右支上異于頂點的一點,的內(nèi)切圓與x軸切于點,則a的值為______,若直線經(jīng)過線段的中點且垂直于線段,則雙曲線C的方程為________________.
【答案】2
【解析】
設點是雙曲線右支上一點,按雙曲線的定義,,設三角形的內(nèi)切圓心在軸上的投影為,分別為內(nèi)切圓與的切點.由同一點向圓引得兩條切線相等知,由此得到△的內(nèi)切圓的圓心橫坐標.即為,根據(jù)條件△為直角三角形,有,則,所以在△中,可求解.
點是雙曲線右支上一點,由雙曲線的定義,可得,
若設三角形的內(nèi)切圓心在橫軸上的投影為,
該點也是內(nèi)切圓與軸的切點.設分別為內(nèi)切圓與的切點.
考慮到同一點向圓引的兩條切線相等:
則有:
即
所以內(nèi)切圓的圓心橫坐標為 .
由題意可得,
又直線經(jīng)過線段的中點且垂直于線段
設得中點為,則 ,
所以直線與平行,則 ,
則,根據(jù)雙曲線的定義有:
則在直角三角形△中有:
解得:,所以
由勾股定理有,即
解得: ,所以
所以雙曲線方程為:
故答案為:2 .
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),為實數(shù).
(1)討論在上的奇偶性;(只要寫出結論,不需要證明)
(2)當時,求函數(shù)的單調(diào)區(qū)間;
(3)當時,求函數(shù)在上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直四棱柱中,底面為菱形,且側棱 其中為的交點.
(1)求點到平面的距離;
(2)在線段上,是否存在一個點,使得直線與垂直?若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,焦距為,拋物線的焦點F是橢圓的頂點.
(1)求與的標準方程;
(2)上不同于F的兩點P,Q滿足以PQ為直徑的圓經(jīng)過F,且直線PQ與相切,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點與短軸兩端點構成一個面積為2的等腰直角三角形,為坐標原點.
(1)求橢圓的方程;
(2)設點在橢圓上,點在直線上,且,求證:為定值;
(3)設點在橢圓上運動,,且點到直線的距離為常數(shù),求動點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列和滿足:,,,且對一切,均有.
(1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;
(2)若,求數(shù)列的前n項和;
(3)設(),記數(shù)列的前n項和為,問:是否存在正整數(shù),對一切,均有恒成立.若存在,求出所有正整數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙三家企業(yè)產(chǎn)品的成本分別為10000,12000,15000,其成本構成如下圖所示,則關于這三家企業(yè)下列說法錯誤的是( )
A.成本最大的企業(yè)是丙企業(yè)B.費用支出最高的企業(yè)是丙企業(yè)
C.支付工資最少的企業(yè)是乙企業(yè)D.材料成本最高的企業(yè)是丙企業(yè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com