17.在△ABC中,a,b,c分別為A,B,C的對邊,已知a,b,c成等比數(shù)列,a2-c2=ac+bc,a=3$\sqrt{3}$,則$\frac{b+c}{sinB+sinC}$=( 。
A.12B.6$\sqrt{2}$C.4$\sqrt{3}$D.6

分析 a,b,c成等比數(shù)列,可得b2=ac.又a2-c2=ac+bc,可得b2+c2-a2=-bc.利用余弦定理可得cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=-$\frac{1}{2}$.利用正弦定理可得$\frac{b+c}{sinB+sinC}$=$\frac{a}{sinA}$,即可得出.

解答 解:∵a,b,c成等比數(shù)列,∴b2=ac.
∵a2-c2=ac+bc,∴a2-c2=b2+bc,∴b2+c2-a2=-bc.
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=-$\frac{1}{2}$.A∈(0,π).
∴$A=\frac{2π}{3}$.
則$\frac{b+c}{sinB+sinC}$=$\frac{a}{sinA}$=$\frac{3\sqrt{3}}{sin\frac{2π}{3}}$=6.
故選:D.

點(diǎn)評 本題考查了正弦定理、余弦定理、三角函數(shù)求值,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)已知f(x+1)=4x2+2x+1求f(x)的解析式.
(2)若函數(shù)f(x)是二次函數(shù)且滿足f(x+2)-2f(x)=x2-5x,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=|x+2|+|x-1|.
(1)求不等式f(x)>5的解集;
(2)若f(x)≥a2-2a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知復(fù)數(shù)z滿足(2-i)z=1+2i,則z=( 。
A.-2iB.$\frac{4}{5}+i$C.iD.$\frac{4}{5}+\frac{3}{5}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.焦點(diǎn)為(0,±6)且與雙曲線$\frac{x^2}{2}-{y^2}=1$有相同漸近線的雙曲線方程是( 。
A.$\frac{x^2}{12}-\frac{y^2}{24}=1$B.$\frac{y^2}{12}-\frac{x^2}{24}=1$C.$\frac{y^2}{24}-\frac{x^2}{12}=1$D.$\frac{x^2}{24}-\frac{y^2}{12}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=lnx-x在x∈(0,e]上的最大值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,角A,B,C所對的邊長分別為a、b、c,角A為銳角,設(shè)△ABC的面積滿足${S_△}=\frac{{\sqrt{3}}}{4}bc$且 $\frac{c}=\frac{1}{2}+\sqrt{3}$.求角A和tanB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某大學(xué)為了解在校本科生對參加某項(xiàng)社會實(shí)踐活動的意向,擬采用分層抽樣的方法,從該校四個(gè)年級的本科生中抽取一個(gè)容量為300的樣本進(jìn)行調(diào)查.已知該校一年級、二年級、三年級、四年級的本科生人數(shù)之比為5:4:5:6,則應(yīng)從一年級本科生中抽取75名學(xué)生.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|x+4|-|x-1|.
(1)解不等式f(x)>3;
(2)若不等式f(x)+1≤4a-5×2a有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案