分析 (1)由題意可得$f(x)=\left\{{\begin{array}{l}{-5,x≤-4}\\{2x+3,-4<x<1}\\{5,x≥1}\end{array}}\right.$,分類討論,求得不等式f(x)>3的解集.
(2)根據(jù)題意可得$f(x)=\left\{{\begin{array}{l}{-5,x≤-4}\\{2x+3,-4<x<1}\\{5,x≥1}\end{array}}\right.$ 的最小值為-5,可得4a-5×2a-1≥-5,由此求得實數(shù)a的取值范圍.
解答 解:(1)由題意可得$f(x)=\left\{{\begin{array}{l}{-5,x≤-4}\\{2x+3,-4<x<1}\\{5,x≥1}\end{array}}\right.$,
則當x≤-4時,不成立;當-4<x<1時,2x+3>3,解得0<x<1;
當x≥1時,5>3成立,故原不等式的解集為{x|x>0}.
(2)根據(jù)題意可得$f(x)=\left\{{\begin{array}{l}{-5,x≤-4}\\{2x+3,-4<x<1}\\{5,x≥1}\end{array}}\right.$ 的最小值為-5,
由即f(x)≤4a-5×2a-1有解,∴4a-5×2a-1≥-5,即4a-5×2a+4≥0,即2a≥4或2a≤1,∴a≥2或a≤0,
故實數(shù)a的取值范圍是(-∞,0]∪[2,+∞).
點評 本題主要考查帶有絕對值的函數(shù)的性質,指數(shù)不等式的解法,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12 | B. | 6$\sqrt{2}$ | C. | 4$\sqrt{3}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com