15.兩直線x+y-5=0和直x-y=0的交點(diǎn)坐標(biāo)為$(\frac{5}{2},\frac{5}{2})$.

分析 聯(lián)立$\left\{\begin{array}{l}{x+y-5=0}\\{x-y=0}\end{array}\right.$,解出即可得出.

解答 解:聯(lián)立$\left\{\begin{array}{l}{x+y-5=0}\\{x-y=0}\end{array}\right.$,解得x=y=$\frac{5}{2}$.
可得交點(diǎn):$(\frac{5}{2},\frac{5}{2})$.
故答案為:$(\frac{5}{2},\frac{5}{2})$.

點(diǎn)評(píng) 本題考查了直線的交點(diǎn)、方程組的解法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=-3x2+a(5-a)x+b.
(1)當(dāng)關(guān)于x的不等式f(x)>0的解集為(-1,3)時(shí),求實(shí)數(shù)a,b的值;
(2)若對(duì)任意實(shí)數(shù)a,不等式f(2)<0恒成立,求實(shí)數(shù)b的取值范圍;
(3)設(shè)b為常數(shù),求關(guān)于a的不等式f(1)<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知$\overrightarrow{a}$,$\overrightarrow$是任意兩個(gè)向量,下列條件:①$\overrightarrow{a}$=$\overrightarrow$;②|$\overrightarrow{a}$|=|$\overrightarrow$|;③$\overrightarrow{a}$與$\overrightarrow$的方向相反;④$\overrightarrow{a}$=0或$\overrightarrow$=0;⑤$\overrightarrow{a}$與$\overrightarrow$都是單位向量.其中,使向量$\overrightarrow{a}$與$\overrightarrow$平行的有①③④(只填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ax3+bx(x∈R).
(1)若函數(shù)f(x)的圖象在點(diǎn)x=3處的切線與直線x+24y+1=0垂直,函數(shù)f(x)在x=1處取得極值,求函數(shù)f(x)的解析式.并確定函數(shù)的單調(diào)遞減區(qū)間;
(2)若a=1,且函數(shù)f(x)在[-1,1]上減函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若△ABC內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,且${a^2}={c^2}-{b^2}+\sqrt{3}ba$,則∠C=(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.不等式組$\left\{\begin{array}{l}{x-y-2≤0}\\{x+y+3≤0}\\{1≤|x+3|≤2}\end{array}\right.$表示的平面區(qū)域的面積為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若f(x)=x4-3x3+1,則f′(x)=( 。
A.4x3-6x2B.4x3-9x2C.4x3+6x2D.4x3-6x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=2x2+ex-$\frac{1}{3}$(x<0)與g(x)=2x2+ln(x+a)的圖象上存在關(guān)于y軸對(duì)稱的點(diǎn),則a的取值范圍是a<e${\;}^{\frac{2}{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.對(duì)任意k∈R,直線y=klog2x-2總過一個(gè)定點(diǎn),該定點(diǎn)坐標(biāo)為( 。
A.(1,-2)B.(-1,2)C.(2,-1)D.(-2,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案