5.如圖,已知球O的面上四點(diǎn)A、B、C、D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=$\sqrt{3}$,則球O的體積等于$\frac{9π}{2}$.

分析 說明△CDB是直角三角形,△ACD是直角三角形,球的直徑就是CD,求出CD,即可求出球的體積.

解答 解:AB⊥BC,△ABC的外接圓的直徑為AC,AC=$\sqrt{6}$,
由DA⊥面ABC得DA⊥AC,DA⊥BC,△CDB是直角三角形,△ACD是直角三角形,
∴CD為球的直徑,CD=$\sqrt{C{A}^{2}+D{A}^{2}}$=3∴球的半徑R=$\frac{3}{2}$.
∴V=$\frac{4}{3}$πR3=$\frac{9π}{2}$.
故答案為:$\frac{9}{2}$π.

點(diǎn)評 本題是基礎(chǔ)題,考查球的內(nèi)接多面體,說明三角形是直角三角形,推出CD是球的直徑,是本題的突破口,解題的重點(diǎn)所在,考查分析問題解決問題的能力

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某校高三年級共有30個班,學(xué)校心理咨詢室為了了解同學(xué)們的心理狀況,將每個班編號,依次為1到30,現(xiàn)用系統(tǒng)抽樣的方法抽取6個班進(jìn)行調(diào)查,若抽到的編號之和為87,則抽到的最小編號為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某學(xué)校為了了解該校學(xué)生對于某項(xiàng)運(yùn)動的愛好是否與性別有關(guān),通過隨機(jī)抽查110名學(xué)生,得到如下2×2的列聯(lián)表:
喜歡該項(xiàng)運(yùn)動不喜歡該項(xiàng)運(yùn)動總計
402060
203050
總計6050110
由公式K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,算得K2≈7.61
附表:
p(K2≥k00.0250.010.005
k05.0246.6357.879
參照附表,以下結(jié)論正確是( 。
A.有99.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”
B.有99.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”
C.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”
D.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知$|{\overrightarrow a}|=3$,$|{\overrightarrow b}|=8$,$\overrightarrow a•\overrightarrow b=-12$,則$\overrightarrow a與\overrightarrow b$的夾角為( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.△ABC中,角A、B、C的對邊分別為a、b、c,a=2,C=$\frac{π}{3}$.
(1)若$A=\frac{π}{4}$,求c;
(2)若△ABC的面積$S=\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=-x2+8x,g(x)=6ln x+m.
(1)若函數(shù)y=g(x)的圖象與直線y=6x相切,求實(shí)數(shù)m的值;
(2)若函數(shù)y=f(x)的圖象與y=g(x)的圖象有且只有三個不同的交點(diǎn),求出實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知{ an }是一個公差大于0的等差數(shù)列,且滿足a3a6=55,a2+a7=16.
(1)求數(shù)列{ an }的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足$\frac{_{1}}{2}+\frac{_{2}}{{2}^{2}}+\frac{_{3}}{{2}^{3}}$+…+$\frac{_{n}}{{2}^{n}}$=an (n∈N* )  求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.四棱錐P-ABCD的底面ABCD是邊長為6的正方形,且PA=PB=PC=PD,若一個半徑為1的球與此四棱錐所有面都相切,則該四棱錐的高是$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列敘述中,正確的個數(shù)是( 。
①命題P:“?x∈R,x2-2≥0”的否定形式為¬P:“?x∈R,x2-2<0”
②雙曲線上任意一點(diǎn)到左右焦點(diǎn)的距離的差等于雙曲線的實(shí)軸長
③“m>n”是“${(\frac{2}{3})^m}>{(\frac{2}{3})^n}$的充分不必要條件;
④命題“若x2-3x-4=0,則x=4”的逆否命題為“x≠4,則x2-3x-4≠0”
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案