13.已知$|{\overrightarrow a}|=3$,$|{\overrightarrow b}|=8$,$\overrightarrow a•\overrightarrow b=-12$,則$\overrightarrow a與\overrightarrow b$的夾角為( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{2π}{3}$

分析 利用兩個(gè)向量的數(shù)量積的定義求得cosθ的值,可得兩個(gè)向量的夾角θ的值.

解答 解:設(shè)$\overrightarrow a與\overrightarrow b$的夾角為θ,θ∈[0,π],則由題意可得3•8•cosθ=-12,
求得cosθ=-$\frac{1}{2}$,∴cosθ=-$\frac{1}{2}$,∴θ=$\frac{2π}{3}$,
故選:D.

點(diǎn)評(píng) 本題主要考查兩個(gè)向量的數(shù)量積的定義,根據(jù)三角函數(shù)的值求角,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.函數(shù)$f(x)=Asin(ωx-ϕ)+2(A>0,ω>0,0<ϕ<\frac{π}{2})$圖象的一個(gè)最高點(diǎn)值為$(\frac{5π}{12},4)$,且相鄰兩條對(duì)稱軸之間的距離為$\frac{π}{2}$
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)α∈(0,π),則$f(\frac{α}{2})=3$,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知$\overrightarrow a$=(1,-2),$\overrightarrow b$=(3,2)
(1)求$2\overrightarrow a+\overrightarrow b$;
(2)設(shè)$\overrightarrow c=(9,-2)$,若$\overrightarrow c=m\overrightarrow a+n\overrightarrow b$,求m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,$\frac{asinA+bsinB-csinC}{asinB}$=$\frac{2\sqrt{3}}{3}$sinC,c=2$\sqrt{3}$,則a+b的最大值為$4\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在等腰直角△ABC中,AB⊥AC,BC=2,M為BC中點(diǎn),N為AC中點(diǎn),D為BC邊上一個(gè)動(dòng)點(diǎn),△ABD沿AD翻折使BD⊥DC,點(diǎn)A在面BCD上的投影為點(diǎn)O,當(dāng)點(diǎn)D在BC上運(yùn)動(dòng)時(shí),以下說(shuō)法錯(cuò)誤的是( 。
A.線段NO為定長(zhǎng)B.$|CO|∈[1,\sqrt{2})$C.∠AMO+∠ADB>180°D.點(diǎn)O的軌跡是圓弧

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖所示,為測(cè)量一水塔AB的高度,在C處測(cè)得塔頂?shù)难鼋菫?0°,后退20米到達(dá)D處測(cè)得塔頂?shù)难鼋菫?0°,則水塔的高度為$10\sqrt{3}$米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,已知球O的面上四點(diǎn)A、B、C、D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=$\sqrt{3}$,則球O的體積等于$\frac{9π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.以下幾個(gè)結(jié)論中:①在△ABC中,有等式$\frac{a}{sinA}=\frac{b+c}{sinB+sinc}$
②在邊長(zhǎng)為1的正△ABC中一定有$\overrightarrow{AB}•\overrightarrow{BC}$=$\frac{1}{2}$
③若向量$\overrightarrow{a}$=(-3,2),$\overrightarrow$=(0,-1),則向量$\overrightarrow{a}$ 在向量$\overrightarrow$ 方向上的投影是-2
④與向量$\overrightarrow{a}$=(-3,4)同方向的單位向量是$\overrightarrow{e}$=(-$\frac{3}{7}$,$\frac{4}{7}$)
⑤若a=40,b=20,B=25°,則滿足條件的△ABC僅有一個(gè);
其中正確結(jié)論的序號(hào)為①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在公差不為零的等差數(shù)列{an}中,已知a1=1,且a1,a2,a5依次成等比數(shù)列.?dāng)?shù)列{bn}滿足bn+1=2bn-1,且b1=3.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{an(bn-1)}的前n項(xiàng)和為Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案