15.實(shí)數(shù)m分別取什么數(shù)值時(shí),復(fù)數(shù)z=(m+2)+(3-2m)i
(1)與復(fù)數(shù)12+17i互為共軛;
(2)復(fù)數(shù)的模取得最小值,求出此時(shí)的最小值.

分析 (1)根據(jù)共軛復(fù)數(shù)的定義得到關(guān)于 m的方程組,解出即可;(2)根據(jù)二次函數(shù)的性質(zhì)求出|z|的最小值即可.

解答 解:(1)根據(jù)共軛復(fù)數(shù)的定義得:
$\left\{\begin{array}{l}{m+2=12}\\{3-2m=-17}\end{array}\right.$,解得:m=10;
(2)|z|=$\sqrt{{(m+2)}^{2}{+(3-2m)}^{2}}$=$\sqrt{{5(m-\frac{4}{5})}^{2}+\frac{49}{5}}$,
當(dāng)m=$\frac{4}{5}$時(shí),復(fù)數(shù)的模取最小值$\frac{7\sqrt{5}}{5}$.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)求模問題,考查共軛復(fù)數(shù)的定義,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,直線l過點(diǎn)P(1,0),傾斜角為$\frac{3π}{4}$.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=4cosθ;
(1)寫出直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(2)記直線l和曲線C的兩個(gè)交點(diǎn)分別為A,B,求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.平行六面體ABCD-A1B1C1D1中,底面ABCD是邊長(zhǎng)為1的正方形,$A{A_1}=\sqrt{2}$,∠A1AD=∠A1AB=120°,則對(duì)角線BD1的長(zhǎng)度為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.偶函數(shù)f(x)在(0,+∞)上遞增,a=f(log2$\frac{1}{3}$)b=f($\frac{3}{2}$)c=f(log32),則下列關(guān)系式中正確的是( 。
A.<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)f(x)=ax+cosx在R上是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.[1,+∞)B.(1,+∞)C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,某組合體的三視圖是由邊長(zhǎng)為2的正方形和直徑為2的圓組成,則它的體積為(  )
A.4+4πB.8+4πC.$4+\frac{4}{3}π$D.$8+\frac{4}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在如圖所示程序框圖中,任意輸入一次x(0≤x≤1)與y(0≤y≤1),則能輸出“恭喜中獎(jiǎng)!”的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=xlnx-x,g(x)=$\frac{a}{2}$x2-ax(a∈R).
(Ⅰ)若f(x)和g(x)在(0,+∞)有相同的單調(diào)區(qū)間,求a的取值范圍;
(Ⅱ)令h(x)=f(x)-g(x)-ax(a∈R),若h(x)在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(i)求a的取值范圍;
(ii)設(shè)兩個(gè)極值點(diǎn)分別為x1,x2,證明:x1•x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若sinα+cosα=tan390°,則sin2α等于(  )
A.-$\frac{2}{3}$B.-$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案