16.將曲線C按照伸縮變換$\left\{{\begin{array}{l}{x'=2x}\\{y'=3y}\end{array}}\right.$后得到的曲線方程為x'-y'+4=0,則曲線C的方程為(  )
A.2x+3y-4=0B.3x-2y+4=0C.2x-3y+4=0D.3x-2y+24=0

分析 只要把伸縮變換公式$\left\{{\begin{array}{l}{x'=2x}\\{y'=3y}\end{array}}\right.$代入曲線方程x'-y'+4=0,即可得原曲線C的方程.

解答 解:∵將曲線C按照伸縮變換$\left\{{\begin{array}{l}{x'=2x}\\{y'=3y}\end{array}}\right.$后得到的曲線方程為x'-y'+4=0,
∴代入可得2x-3y+4=0,
故選:C.

點(diǎn)評(píng) 本題考查了伸縮變換,弄清變化公式的意義和求解的方程即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在極坐標(biāo)系中,圓心在($\sqrt{2}$,π)且過(guò)極點(diǎn)的圓的方程為( 。
A.ρ=2$\sqrt{2}$cos θB.ρ=-2$\sqrt{2}$cos θC.ρ=2$\sqrt{2}$sin θD.ρ=-2$\sqrt{2}$sin θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,直角梯形ABCD與等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB=2CD=2BC=2,EA⊥EB.
(1)求證:AB⊥DE;
(2)求直線EC與平面ABE所成角的正弦值;
(3)線段EA上是否存在點(diǎn)F,使EC∥平面FBD?若存在,求出$\frac{EF}{EA}$;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)=$\frac{{{x^2}-4x+5}}{x}$(x>0),當(dāng)且僅當(dāng)x=$\sqrt{5}$時(shí),f(x)取到最小值為2$\sqrt{5}$-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.結(jié)合下面的算法:
第一步,輸入x
第二步,判斷x是否小于0,若是則輸出x+2,結(jié)束程序;否則執(zhí)行第三步
第三步,輸出x-1,結(jié)束程序;
當(dāng)輸入的x的值分別是-1,0,1時(shí),輸出的結(jié)果分別為1,-1,0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.證明:
(1)$\sqrt{3}-\sqrt{2}$>$\sqrt{5}-\sqrt{4}$
(2)$\sqrt{n+2}-\sqrt{n+1}$<$\sqrt{n+1}-\sqrt{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為是$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=1+\frac{{\sqrt{2}}}{2}t\end{array}$(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=4sinθ.
(1)判斷直線l與曲線C的位置關(guān)系;
(2)在曲線C上求一點(diǎn)P,使得它到直線l的距離最大,并求出最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=2+log3x(1≤x≤9),函數(shù)g(x)=f2(x)+f(x2),求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)一組樣本數(shù)據(jù)與x1,x2,…,xn的平均數(shù)為$\overline{x}$,則這個(gè)樣本的方差為s2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2],樣本標(biāo)準(zhǔn)差s=$\sqrt{{s}^{2}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案