6.在極坐標(biāo)系中,圓心在($\sqrt{2}$,π)且過(guò)極點(diǎn)的圓的方程為( 。
A.ρ=2$\sqrt{2}$cos θB.ρ=-2$\sqrt{2}$cos θC.ρ=2$\sqrt{2}$sin θD.ρ=-2$\sqrt{2}$sin θ

分析 ($\sqrt{2}$,π)化為直角坐標(biāo)$(-\sqrt{2},0)$,可得圓的直角坐標(biāo)方程:$(x+\sqrt{2})^{2}$+y2=2,展開(kāi)利用互化公式即可得出.

解答 解:($\sqrt{2}$,π)化為直角坐標(biāo)$(-\sqrt{2},0)$,
可得圓的直角坐標(biāo)方程:$(x+\sqrt{2})^{2}$+y2=2,
化為:x2+y2+2$\sqrt{2}$x=0,化為極坐標(biāo)方程為:${ρ}^{2}+2\sqrt{2}ρ$cosθ=0,
即ρ=-2$\sqrt{2}$cosθ.
故選:B.

點(diǎn)評(píng) 本題考查了極坐標(biāo)方程與直角坐標(biāo)方程的互化,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢(shì)圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某人隨機(jī)選擇3月1日至3月13日中的某一天到達(dá)該市,并停留2天.
(Ⅰ)求此人到達(dá)當(dāng)日空氣重度污染的概率.
(Ⅱ)設(shè)X是此人停留期間空氣質(zhì)量?jī)?yōu)良的天數(shù),求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知圓C的半徑為2,圓心在x軸的正半軸上,直線(xiàn)3x+4y+4=0與圓C相切,則圓C的方程為(  )
A.(x-1)2+y2=4B.(x-2)2+y2=4C.(x+1)2+y2=4D.(x+2)2+y2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖,在空間四邊形ABCD中,AD=2$\sqrt{2}$,BC=2,E,F(xiàn)分別是AB,CD的中點(diǎn),若EF=$\sqrt{3}$,則異面直線(xiàn)AD與BC所成角的大小為( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)隨機(jī)變量X~B ( n,p ),且EX=6,DX=3,則P(X=1)的值為( 。
A.$\frac{3}{4}$B.$\frac{1}{16}$C.$\frac{3}{1024}$D.$\frac{1}{256}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若a∈R,則“a>3”是“a2-9>0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{1}{3}$x3-bx+c(b,c∈R).
(1)若函數(shù)f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程為y=2x+1,求b,c的值;
(2)若b=1,函數(shù)f(x)在區(qū)間(0,2)內(nèi)有唯一零點(diǎn),求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知A(3,2),B(-1,5),則與向量$\overrightarrow{AB}$同向的單位向量坐標(biāo)是$(-\frac{4}{5},\frac{3}{5})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.將曲線(xiàn)C按照伸縮變換$\left\{{\begin{array}{l}{x'=2x}\\{y'=3y}\end{array}}\right.$后得到的曲線(xiàn)方程為x'-y'+4=0,則曲線(xiàn)C的方程為( 。
A.2x+3y-4=0B.3x-2y+4=0C.2x-3y+4=0D.3x-2y+24=0

查看答案和解析>>

同步練習(xí)冊(cè)答案