7.定義上凸函數(shù)如下:設f(x)為區(qū)間I上的函數(shù),若對任意的x1,x2∈I總有f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{f({x}_{1})+f({x}_{2})}{2}$,則稱f(x)為I上的上凸函數(shù),某同學查閱資料后發(fā)現(xiàn)了上凸函數(shù)有如下判定定理和性質定理:
判定定理:f(x)為上凸函數(shù)的充要條件是f″(x)≥0,x∈I,其中f″(x)為f(x)的導函數(shù)f′(x)的導數(shù).
性質定理:若函數(shù)f(x)為區(qū)間I上的下凸函數(shù),則對I內任意的x1,x2,…,xn,都有$\frac{f({x}_{1})+f({x}_{2})+…+f({x}_{n})}{n}$≥f($\frac{{x}_{1}+{x}_{2}+…+{x}_{n}}{n}$).
請問:在△ABC中,sinA+sinB+sinC的最大值為$\frac{3\sqrt{3}}{2}$.

分析 構造函數(shù)f(x)=sinx,x∈(0,π),求導,則f″(x)≤-sinx,由正弦函數(shù)的圖象可知f″(x)<0成立,則f(x)=sinx,x∈(0,π)是凸函數(shù),根據(jù)凸函數(shù)的性質sinA+sinB+sinC≤3sin($\frac{A+B+C}{3}$),即可求得sinA+sinB+sinC的最大值.

解答 解:設f(x)=sinx,x∈(0,π),則f′(x)=cosx,則f″(x)≤-sinx,x∈(0,π),
由當x∈(0,π),0<sin≤1,則f″(x)<0成立,則f(x)=sinx,x∈(0,π)是凸函數(shù),
由凸函數(shù)的性質可知:$\frac{f({x}_{1})+f({x}_{2})+…+f({x}_{n})}{n}$≤f($\frac{{x}_{1}+{x}_{2}+…+{x}_{n}}{n}$).
則sinA+sinB+sinC≤3sin($\frac{A+B+C}{3}$)=3×sin$\frac{π}{3}$=$\frac{3\sqrt{3}}{2}$,
∴sinA+sinB+sinC的最大值為$\frac{3\sqrt{3}}{2}$,
故答案為:$\frac{3\sqrt{3}}{2}$.

點評 本題考查凸函數(shù)的性質,考查正弦函數(shù)的性質,考查轉化思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知f(x)=lnx-x+m(m為常數(shù)).
(1)求f(x)的極值;
(2)設m>1,記f(x+m)=g(x),已知x1,x2為函數(shù)g(x)是兩個零點,求證:x1+x2<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知數(shù)列{an}的前n項和Sn=n2+pn,且a2,a5,a10成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若bn=1+$\frac{5}{{a}_{n}•{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)$f(x)=mx-\frac{m-1+2e}{x}-lnx$,m∈R,函數(shù)$g(x)=\frac{1}{xcosθ}+lnx$在[1,+∞)上為增函數(shù),且θ∈$({-\frac{π}{2},\frac{π}{2}})$.
(Ⅰ)當m=0時,求函數(shù)f(x)的單調區(qū)間和極值;
(Ⅱ)求θ的值;
(Ⅲ)若在[1,e]上至少存在一個x0,使得f(x0)>g(x0)成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知zi=2-i,則復數(shù)z在復平面對應點的坐標是(  )
A.(-1,-2)B.(-1,2)C.(1,-2)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.如圖在矩形ABCD中,AB=2$\sqrt{3}$,BC=2,E為線段DC上一動點,現(xiàn)將△AED沿AE折起,使點D在面ABC上的射影K在直線AE上,當E從D運動到C,則K所形成軌跡的長度為( 。
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{{\sqrt{6}+\sqrt{2}}}{3}$D.$\frac{{\sqrt{6}+\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若實數(shù)x,y∈R,則“x>0,y>0”是“xy>0”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,正方體ABCD-A1B1C1D1的棱長為1,E、F分別是BB1和CD的中點.
(Ⅰ)求AE與A1F所成角的大;
(Ⅱ)求AE與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調遞增,若實數(shù)x滿足f(log${\;}_{\frac{1}{2}}$|x+1|)<f(-1),則x的取值范圍是$(-3,-\frac{3}{2})∪(-\frac{1}{2},1)$.

查看答案和解析>>

同步練習冊答案