在△ABC中,已知2cos(B+C)=1,b+c=3
3
,bc=4,求:
(1)角A的度數(shù); 
(2)邊a的長(zhǎng)度.
考點(diǎn):正弦定理,余弦定理
專題:解三角形
分析:(1)△ABC中,由條件根據(jù)2cos(B+C)=1,求得cosA的值,可得A的值.
(2)由條件利用余弦定理求得a的值.
解答: 解:(1)△ABC中,∵已知2cos(B+C)=1=-2cosA,∴cosA=-
1
2
,A=120°.
(2)由余弦定理可得a2=b2+c2-2bc•cosA=(b+c)2-2bc+bc=27-4=23,
∴a=
23
點(diǎn)評(píng):本題主要考查誘導(dǎo)公式、余弦定理的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對(duì)任意x∈R都有f(x+4)-f(x)=2f(x),若y=f(x-1)的象關(guān)于直線x=1對(duì)稱,且f(1)=2,則f(2013)=( 。
A、2B、3C、4D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Acos(ωx+φ),(A>0,ω>0,|φ|<
π
2
)的一部分圖象如圖所示.
(1)求f(x)的解析式;
(2)y=f(x)的圖象經(jīng)過怎樣變換得到y(tǒng)=cosx圖象;
(3)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-3x+2=0},集合B={x|x-1>0}.
(1)用列舉法表示集合A;
(2)求A∩B、A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=4,|
b
|=3,(2
a
-3
b
)•(2
a
+
b
)=61,
(1)求
a
b
的夾角θ;        
(2)求|
a
+2
b
|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a=1,c=
2
,cosC=
3
4

(1)求sinA的值;
(2)求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足Sn=2n-an(n∈N*).
(1)計(jì)算a1,a2,a3,a4,并由此猜想通項(xiàng)公式an(不需證明)
(2)記bn=
2
2-an
,當(dāng)n>4時(shí),試比較bn與n2的大小,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+1,且g(x)=f[f(x)],G(x)=g(x)-λf(x),若λ=3,求函數(shù)G(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P:函數(shù)f(x)=x2+ax-2在區(qū)間(1,+∞)上是增函數(shù).
命題Q:方程
x2
3+a
-
y2
a+1
=1表示雙曲線.
又命題P和命題Q至少有一個(gè)為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案