【題目】如圖,在三棱錐P﹣ABC中,PA⊥平面ABC,AB⊥BC,PA=AB,D為PB中點(diǎn),PC=3PE.
(1)求證:平面ADE⊥平面PBC;
(2)在AC上是否存在一點(diǎn)M,使得MB∥平面ADE?若存在,請確定點(diǎn)M的位置,并說明理由.
【答案】(1)證明見解析(2)存在,是中點(diǎn);證明見解析
【解析】
(1)根據(jù)已知可得,,可證BC⊥平面PAB,進(jìn)而BC⊥AD,根據(jù)已知可得AD⊥PB,AD⊥平面PBC,即可證明結(jié)論;
(2)存在M是AC中點(diǎn)時(shí),MB∥平面ADE,取EC中點(diǎn)F,連結(jié)BM,MF,可證
平面,平面,進(jìn)而證明平面平面,即可證明結(jié)論.
(1)證明:∵PA⊥平面ABC,平面ABC,∴BC⊥PA,
平面PAB,
∴BC⊥平面PAB,平面PAB,∴BC⊥AD,
∵PA=AB,D為PB中點(diǎn),∴AD⊥PB,
平面,∴AD⊥平面PBC,
∵AD平面ADE,∴平面ADE⊥平面PBC.
(2)點(diǎn)M是AC中點(diǎn)時(shí),MB∥平面ADE,證明如下:
取EC中點(diǎn)F,連結(jié)BM,MF,
因?yàn)?/span>分別為的兩個(gè)三等分點(diǎn),
在中,平面,
平面平面,
同理平面,又平面,
平面平面,平面,
平面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知拋物線C的方程C:y2="2" p x(p>0)過點(diǎn)A(1,-2).
(I)求拋物線C的方程,并求其準(zhǔn)線方程;
(II)是否存在平行于OA(O為坐標(biāo)原點(diǎn))的直線l,使得直線l與拋物線C有公共點(diǎn),且直線OA與l的距離等于?若存在,求出直線l的方程;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間和極值;
(2)若直線是曲線的切線,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱的棱長均為2,O為AC的中點(diǎn),平面A'OB⊥平面ABC,平面⊥平面ABC.
(1)求證:A'O⊥平面ABC;
(2)求二面角A﹣BC﹣C'的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)若在上存在極值點(diǎn),求a的取值范圍;
(2)設(shè),,若存在最大值,記為,則當(dāng)時(shí),是否存在最大值?若存在,求出其最大值;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的直角坐標(biāo)方程;
(2)若與有且僅有三個(gè)公共點(diǎn),求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn)O,左焦點(diǎn)為F1(-1,0)的橢圓C的左頂點(diǎn)為A,上頂點(diǎn)為B,F1到直線AB的距離為|OB|.
(1)求橢圓C的方程;
(2)如圖,若橢圓,橢圓,則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知C2是橢圓C的3倍相似橢圓,若橢圓C的任意一條切線l交橢圓C2于兩點(diǎn)M、N,試求弦長|MN|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,若點(diǎn)A為函數(shù)上的任意一點(diǎn),點(diǎn)B為函數(shù)上的任意一點(diǎn).
(1)求A,B兩點(diǎn)之間距離的最小值;
(2)若A,B為函數(shù)與函數(shù)公切線的兩個(gè)切點(diǎn),求證:這樣的點(diǎn)B有且僅有兩個(gè),且滿足條件的兩個(gè)點(diǎn)B的橫坐標(biāo)互為倒數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com