分析 如圖空間直角坐標系D=xyz,則D(0,0,0),B(1,1,0),C(0,1,0),D1(0,0,2),C1(0,1,2),E(1,0,a)
(1)由C1E⊥平面BDE.得$\overrightarrow{E{C}_{1}}•\overrightarrow{DE}=-1+(2-a)a=0$,解得a=1
設(shè)直線BD1與平面BDE所成角為θ,sinθ=$\frac{\overrightarrow{{D}_{1}B}•\overrightarrow{E{C}_{1}}}{|\overrightarrow{{D}_{1}E}||\overrightarrow{E{C}_{1}}|}$=$\frac{\sqrt{2}}{3}$
(Ⅱ)由(Ⅰ)得面BDE的法向量為$\overrightarrow{E{C}_{1}}(-1,1,1)$.求出面CBE的法向量為$\overrightarrow{n}=(x,y,z)$,利用向量夾角公式求解.
解答 解:如圖建立空間直角坐標系D=xyz,則D(0,0,0),B(1,1,0),C(0,1,0),D1(0,0,2),C1(0,1,2),E(1,0,a)
(1)$\overrightarrow{E{C}_{1}}=(-1,1,2-a)$,$\overrightarrow{DB}=(1,1,0)$,$\overrightarrow{DE}=(1,0,a)$
∵C1E⊥平面BDE.∴$\overrightarrow{E{C}_{1}}⊥\overrightarrow{DE}$,即$\overrightarrow{E{C}_{1}}•\overrightarrow{DE}=-1+(2-a)a=0$,解得a=1
設(shè)直線BD1與平面BDE所成角為θ.
$\overrightarrow{E{C}_{1}}=(-1,1,1),\overrightarrow{{D}_{1}B}=(1,1,-2)$
sinθ=$\frac{\overrightarrow{{D}_{1}B}•\overrightarrow{E{C}_{1}}}{|\overrightarrow{{D}_{1}E}||\overrightarrow{E{C}_{1}}|}$=$\frac{\sqrt{2}}{3}$
(Ⅱ)由(Ⅰ)得面BDE的法向量為$\overrightarrow{E{C}_{1}}(-1,1,1)$.
設(shè)面CBE的法向量為$\overrightarrow{n}=(x,y,z)$,
$\overrightarrow{CB}=(1,0,0),\overrightarrow{BE}=(0,-1,1)$,
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CB}=x=0}\\{\overrightarrow{n}•\overrightarrow{BE}=-y+z=0}\end{array}\right.$,可得$\overrightarrow{n}=(0,1,1)$
∴$cos<\overrightarrow{E{C}_{1}},\overrightarrow{n}>$=$\frac{\overrightarrow{E{C}_{1}}•\overrightarrow{n}}{|\overrightarrow{E{C}_{1}}||\overrightarrow{n}|}$=$\frac{\sqrt{6}}{3}$
∴二面角C-BE-D的余弦值為$\frac{\sqrt{6}}{3}$
、
點評 本題考查了空間線面位置關(guān)系,向量法處理垂直關(guān)系,向量法求空間角,屬于中檔題,
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 將f(x)的圖象向左平移$\frac{π}{2}$個單位后得到g(x)的圖象 | |
B. | 函數(shù)y=f(x)•g(x)的最小正周期為2π | |
C. | 函數(shù)y=f(x)•g(x)的最大值為1 | |
D. | x=$\frac{π}{2}$是函數(shù)y=f(x)•g(x)圖象的一條對稱軸 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{5}{2}$ | C. | $\frac{7}{2}$ | D. | $\frac{7}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 3 | 7 | 5 | 9 | 6 | 1 | 8 | 2 | 4 |
A. | 7560 | B. | 7564 | C. | 7550 | D. | 7554 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com