【題目】如圖,、是兩個小區(qū)所在地,、到一條公路的垂直距離分別為,,兩端之間的距離為.

1)某移動公司將在之間找一點,在處建造一個信號塔,使得的張角與、的張角相等,試確定點的位置.

2)環(huán)保部門將在之間找一點,在處建造一個垃圾處理廠,使得、所張角最大,試確定點的位置.

【答案】(1);(2

【解析】

試題(1)設,我們只要利用已知列出關于的方程即可,而這個方程就是在兩個三角形中利用正切的定義,,因此有,解之得;實際上本題可用相似形知識求解,,則,由引開出方程解出;(2)要使得最大,可通過求,因為

,只要設,則都可用表示出來,從而把問題轉(zhuǎn)化為求函數(shù)的最值,同(1)可得,這里我們用換元法求最值,令,則有,注意到可取負數(shù),即為鈍角,因此在取負值中的最小值時,取最大值.

1)設,.

依題意有,. 3

,得,解得,故點應選在距2. 6

2)設,.

依題意有,,

10

,由,得,,

12

,,

,所張的角為鈍角,最大角當,即時取得,故點應選在距. 14

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)),.

(1)若對任意的,,都有恒成立,試求m的取值范圍;

(2)用表示mn中的最小值,設函數(shù)),討論關于x的方程的實數(shù)解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+θ),其中ω>0,θ∈(0,),=0,(x1≠x2),|x2-x1min,f(x)=f(-x),將函數(shù)f(x)的圖象向左平移個單位長度得到函數(shù)g(x)的圖象,則函數(shù)g(x)的單調(diào)遞減區(qū)間是

A. [kπ-,kπ+](k∈Z) B. [kπ,kπ+](k∈Z)

C. [kπ+,kπ+](k∈Z) D. [kπ+,kπ+](k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓恒過點,且與直線 相切.

(1)求動圓圓心的軌跡的方程;

(2)探究在曲線上,是否存在異于原點的兩點, ,當時,直線恒過定點?若存在,求出該定點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)若直角三角形兩直角邊長之和為12,求其周長的最小值;

(2)若三角形有一個內(nèi)角為,周長為定值,求面積的最大值;

(3)為了研究邊長滿足的三角形其面積是否存在最大值,現(xiàn)有解法如下:(其中, 三角形面積的海倫公式),

,

,,,則,

但是,其中等號成立的條件是,于是矛盾,

所以,此三角形的面積不存在最大值.

以上解答是否正確?若不正確,請你給出正確的答案.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】的內(nèi)角AB,C的對邊分別為a,b,c,已知.

1)求C

2)若,的面積為,求的周長;

3)若,求周長的取值范圍;

4)若,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,平面平面,,,,分別為線段,,的中點,點是線段的中點.求證:

1平面

2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCD中,AB= ,AD=2,E,F為線段AB的三等分點,GH為線段DC的三等分點.將長方形ABCD卷成以AD為母線的圓柱W的半個側面,AB、CD分別為圓柱W上、下底面的直徑.

Ⅰ)證明:平面ADHF⊥平面BCHF;

(Ⅱ)若PDC的中點,求三棱錐HAGP的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,圓.

1)若直線l且被圓C截得的弦長為,求直線l的方程;

2)點,,點Q是圓C上的任意一點,求面積的最小值.

查看答案和解析>>

同步練習冊答案