15.交通擁堵指數(shù)是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通擁堵指數(shù)為T,其范圍為[0,10],分別有五個(gè)級別;T∈[0,2]暢通;T∈[2,4]基本暢通;T∈[4,6]輕度擁堵;T∈[6,8]中度擁堵;T∈[8,10]嚴(yán)重?fù)矶拢砀叻鍟r(shí)段(T≥2),從某市交能指揮中心選取了市區(qū)20個(gè)交能路段,依據(jù)其交能擁堵指數(shù)數(shù)據(jù)繪制的直方圖如圖所示,用分層抽樣的方法從交通指數(shù)在[4,6],[6,8],[8,10]的路段中共抽取6個(gè)中段,則中度擁堵的路段應(yīng)抽取3個(gè).

分析 解:由頻率分布直方圖知[4,6],[6,8],[8,10]的路段共有18個(gè),由此能求出按分層抽樣,從18個(gè)路段選出6個(gè),中度擁堵的路段應(yīng)抽取的個(gè)數(shù).

解答 解:由頻率分布直方圖知[4,6],[6,8],[8,10]的路段共有:
(0.1+0.2)×20+(0.25+0.2)×20+(0.1+0.05)×20=18個(gè),
按分層抽樣,從18個(gè)路段選出6個(gè),
∵T∈[6,8]中度擁堵,
∴中度擁堵的路段應(yīng)抽。6×$\frac{(0.25+0.2)×20}{18}$=3個(gè).
故答案為:3.

點(diǎn)評 本題考查頻數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意分層抽象和概率知識的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,已知a,b,c分別是角A,B,C的對邊,$cosA=\frac{4}{5}$,c=2,△ABC的面積S=6,則a的值為( 。
A.$6\sqrt{2}$B.$4\sqrt{5}$C.$2\sqrt{34}$D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.${(x+\frac{1}{x})^9}$展開式中的第四項(xiàng)是( 。
A.56x3B.84x3C.56x4D.84x4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)是偶函數(shù)的是(  )
①f(x)=lg|x|;②f(x)=ex+e-x;③f(x)=x2(x∈N);④f(x)=x-$\sqrt{{x}^{2}}$.
A.①②B.①③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知點(diǎn)H(-1,0),動點(diǎn)P是y軸上除原點(diǎn)外的一點(diǎn),動點(diǎn)M滿足PH⊥PM,且PM與x軸交于點(diǎn)Q,Q是PM的中點(diǎn).
(1)求動點(diǎn)M的軌跡E的方程;
(2)已知直線l1:x=my+$\frac{1}{8}$與曲線E交于A,C兩點(diǎn),直線l2與l1關(guān)于x軸對稱,且交曲線E于B,D兩點(diǎn),試用m表示四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.命題p:?x,y∈R,x2+y2≥0,則命題p的否定為( 。
A.?x,y∈R,x2+y2<0B.?x,y∈R,x2+y2≤0
C.?x0,y0∈R,x02+y02≤0D.?x0,y0∈R,x02+y02<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知x、y滿足不等式組$\left\{\begin{array}{l}{x+y≤1}\\{x-y≥-1}\\{y≥0}\end{array}\right.$,若直線x-y-a=0平分不等式組所表示的平面區(qū)域的面積,則a的值為( 。
A.-$\frac{1}{2}$B.-$\frac{\sqrt{2}}{2}$C.1-2$\sqrt{2}$D.1-$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在如圖所示的空間直角坐標(biāo)系O-xyz中,一個(gè)四面體的頂點(diǎn)坐標(biāo)系分別為(0,0,2),(2,2,2),(2,2,0),(2,1,1),給出編號為①②③④⑤的五個(gè)圖,則該四面體的側(cè)視圖和俯視圖分別為( 。
A.①和⑤B.②和③C.④和⑤D.④和③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)隨機(jī)變量ξ~N(0,1),若P(ξ>1)=p,則P(-1<ξ<0)=$\frac{1}{2}$-p.

查看答案和解析>>

同步練習(xí)冊答案