13.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1的漸近線方程為( 。
A.4x±9y=0B.9x±4y=0C.3x±2y=0D.2x±3y=0

分析 把曲線的方程化為標(biāo)準(zhǔn)方程,求出a和b的值,再根據(jù)焦點(diǎn)在x軸上,求出漸近線方程.

解答 解:∵雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1,∴a=2,b=3,焦點(diǎn)在x軸上,
故漸近線方程為 y=±$\frac{a}$x=±$\frac{3}{2}$x,即3x±2y=0.
故選:C.

點(diǎn)評(píng) 本題考查雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,本題的關(guān)鍵是求出a、b的值,要注意雙曲線在x軸還是y軸上,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.一條河的兩岸平行,河水的流速為2m/s,一艘小船以10m/s的速度向垂直于對(duì)岸的方向行駛,求小船在靜水中的速度大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=x2-(4a+1)x+3a2+3a的圖象與x軸交于A、B兩點(diǎn),若兩點(diǎn)間的距離等于2,則a的值為(  )
A.$\frac{3}{2}$B.-$\frac{1}{2}$C.$\frac{3}{2}$或-$\frac{1}{2}$D.$\frac{3}{2}$或-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點(diǎn)為A(-1,0),右焦點(diǎn)為F2($\sqrt{3}$,0),則雙曲線的漸近線方程為( 。
A.y=±$\sqrt{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列命題中的假命題是(  )
A.?x∈R,lgx=0B.?x∈R,x3>0C.?x∈R,tanx=1D.?x∈R,2x>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知α、β是方程x2+x+a=0的兩個(gè)實(shí)數(shù)根.
(1)求a的取值范圍
(2)試用a表示|α|+|β|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=xlnx+\frac{3}{2}$.
(I)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(II)若對(duì)定義域內(nèi)任意的x,$f(x)≥\frac{{-{x^2}+mx}}{2}$恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{2\sqrt{2}}{3}$,橢圓C的右焦點(diǎn)到直線x=$\frac{a}{e}$的距離為$\frac{\sqrt{2}}{4}$,橢圓C的下頂點(diǎn)為D.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過D點(diǎn)作兩條相互垂直的直線分別與橢圓C相交于點(diǎn)P,M.求證:直線PM經(jīng)過一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在長(zhǎng)方體ABCD-A1B1C1D1中,AB=$\sqrt{2}$,BC=AA1=1,點(diǎn)P為對(duì)角線AC1上的動(dòng)點(diǎn),點(diǎn)Q為底面ABCD上的動(dòng)點(diǎn)(點(diǎn)P,Q可以重合),則B1P+PQ的最小值為$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案