1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點(diǎn)為A(-1,0),右焦點(diǎn)為F2($\sqrt{3}$,0),則雙曲線的漸近線方程為(  )
A.y=±$\sqrt{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\frac{1}{2}$x

分析 求出雙曲線的幾何量,即可求解雙曲線的漸近線方程.

解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點(diǎn)為A(-1,0),右焦點(diǎn)為F2($\sqrt{3}$,0),
可得a=1,c=$\sqrt{3}$,
所以b=$\sqrt{2}$.
雙曲線的漸近線方程為:y=$±\sqrt{2}x$.
故選:A.

點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,直三棱柱ABC-A1B1C1中,AC=BC=CC1=2,AC⊥BC,D、E分別為棱CC1、B1C1的中點(diǎn),
(1)求A1B與平面ACC1A1所成角的正弦值;
(2)在線段AC上是否存在一點(diǎn)P,使得PE⊥平面A1BD?若存在,確定點(diǎn)P的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.拋擲一枚均勻的硬幣4次,則恰有2次正面向上的概率( 。
A.$\frac{1}{2}$B.$\frac{1}{16}$C.$\frac{3}{8}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.甲、乙兩支足球隊(duì)比賽,甲獲勝的概率為$\frac{1}{2}$,平局的概率為$\frac{1}{4}$,乙獲勝的概率為$\frac{1}{4}$,下一賽季這兩支球隊(duì)共有5場(chǎng)比賽,在下一賽季中:
(1)甲獲勝3場(chǎng)的概率為$\frac{5}{16}$;
(2)若勝一場(chǎng)積3分,平一場(chǎng)積1分,負(fù)一場(chǎng)積0分,則甲的積分的數(shù)學(xué)期望為$\frac{35}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,在三棱錐O-ABC中,點(diǎn)D是棱AC的中點(diǎn),若$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,則$\overrightarrow{BD}$等于( 。
A.-$\overrightarrow{a}+\overrightarrow-\overrightarrow{c}$B.$\overrightarrow{a}-\overrightarrow+\overrightarrow{c}$C.$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$D.-$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在復(fù)平面內(nèi),復(fù)數(shù)z=-2+i對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1的漸近線方程為(  )
A.4x±9y=0B.9x±4y=0C.3x±2y=0D.2x±3y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.不等式|x+3|-|x-1|≤2a對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,-2]B.(-∞,-2]∪[2,+∞)C.[2,+∞)D.a∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)y=f(x)=x2+1,則在x=2,△x=0.1時(shí),△y的值為( 。
A.0.40B.0.41C.0.43D.0.44

查看答案和解析>>

同步練習(xí)冊(cè)答案