二次函數(shù),它的導函數(shù)的圖象與直線平行.
(1)求的解析式;
(2)若函數(shù)的圖象與直線有三個公共點,求m的取值范圍.

(1);(2)

解析試題分析:(1 )先設,根據(jù)求出,然后根據(jù)可得對稱軸,導函數(shù)圖象與直線平行可求出,從而求出函數(shù)的解析式;(1 1 )先利用導數(shù)求出函數(shù)的極值,然后根據(jù)函數(shù)的圖象與直線有三個公共點,可知的取值范圍應介于兩極值之間.
試題解析:(1),所以
,所以圖像的對稱軸
導函數(shù)圖象與直線從而解得:,

(2) .
 則有
、上遞增,
上遞減 ,且
考點:1、利用導數(shù)求閉區(qū)間上函數(shù)的最值;2、函數(shù)解析式的求解法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖像與直線恰有兩個交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)試判斷函數(shù)的單調(diào)性;
(2)設,求上的最大值;
(3)試證明:對任意,不等式都成立(其中是自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)在(0,1)上單調(diào)遞減.
(1)求a的取值范圍;
(2)令,求在[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某工廠有一批貨物由海上從甲地運往乙地,已知輪船的最大航行速度為60海里/小時,甲地至乙地之間的海上航行距離為600海里,每小時的運輸成本由燃料費和其他費用組成,輪船每小時的燃料費與輪船速度的平方成正比,比例系數(shù)為0.5,其余費用為每小時1250元。
(1)把全程運輸成本(元)表示為速度(海里/小時)的函數(shù);
(2)為使全程運輸成本最小,輪船應以多大速度行駛?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)(,為自然對數(shù)的底數(shù)).
(1)若曲線在點處的切線平行于軸,求的值;
(2)求函數(shù)的極值;
(3)當的值時,若直線與曲線沒有公共點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


已知的導函數(shù),,且函數(shù)的圖象過點.
(1)求函數(shù)的表達式;
(2)求函數(shù)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一個圓柱形圓木的底面半徑為1m,長為10m,將此圓木沿軸所在的平面剖成兩個部分.現(xiàn)要把其中一個部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形(如圖所示,其中O為圓心,在半圓上),設,木梁的體積為V(單位:m3),表面積為S(單位:m2).

(1)求V關于θ的函數(shù)表達式;
(2)求的值,使體積V最大;
(3)問當木梁的體積V最大時,其表面積S是否也最大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當時,不等式恒成立,求實數(shù)的取值范圍;   
(3)若關于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案