P為△ABC所在平面外一點(diǎn),平面α∥平面ABC,α分別交線段PA、PB、PC于A1、B1、C1,若PA1:A1A=2:3,則SA1B1C1S△ABC=
4
25
4
25
分析:作出圖形,由面面平行得到△A1B1C1∽△ABC,再由相似三角形得到面積比為相似比的平方,即可得到面積比.
解答:解:由圖知,∵平面α∥平面ABC,
∴AB∥平面α,
又由平面α∩平面PAB=A1B1,則A1B1∥AB,
∵PA1:A1A=2:3,即PA1:PA=2:5
∴A1B1:AB=2:5
同理得到B1C1:BC=2:5,A1C1:AC=2:5
由于相似三角形得到面積比為相似比的平方,
所以SA1B1C1S△ABC=(
2
5
)2=
4
25

故答案為
4
25
點(diǎn)評:本題考查面面平行的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、點(diǎn)P為△ABC所在平面外一點(diǎn),PO⊥平面ABC,垂足為O,若PA=PB=PC,則點(diǎn)O是△ABC的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3、點(diǎn)P為△ABC所在平面外一點(diǎn),PO⊥平面ABC,垂足為O,若PA=PB=PC,則點(diǎn)O是△ABC的
外心
(選 填 內(nèi)心、外心、重心、垂心)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ABC=90°,P為△ABC所在平面外一點(diǎn),PA⊥平面ABC,則四面體P-ABC中共有(  )個直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知A(1,4),B(4,1),C(0,-4),若P為△ABC所在平面一動點(diǎn),則
PA
PB
+
PB
PC
+
PC
PA
的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P為△ABC所在平面內(nèi)一點(diǎn),且滿足
AP
=
1
5
AC
+
2
5
AB
,則△APB的面積與△PAC的面積之比為
1
2
1
2

查看答案和解析>>

同步練習(xí)冊答案