14.一個(gè)幾何體的三視圖如圖所示,則它的體積為(  )
A.$\frac{20}{3}$B.$\frac{40}{3}$C.$\frac{8}{3}$D.40

分析 幾何體是四棱錐,根據(jù)三視圖判斷相關(guān)幾何量的數(shù)據(jù),把數(shù)據(jù)代入棱錐的體積公式計(jì)算

解答 解:由三視圖知:幾何體是四棱錐,如圖:
其中SA⊥平面ABCD,SA=4,四邊形ABCD為直角梯形,AD∥BC,AB=AD=4,BC=1.
∴幾何體的體積V=$\frac{1}{3}$×$\frac{1+4}{2}$×4×4=$\frac{40}{3}$.
故選:B.

點(diǎn)評(píng) 本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及數(shù)據(jù)所對(duì)應(yīng)的幾何量是解題的關(guān)鍵

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若等式$\sqrt{3}$sinα+cosα=$\frac{3m+1}{4}$能夠成立,則m的取值范圍是[-3,$\frac{7}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某校在兩個(gè)班進(jìn)行學(xué)習(xí)方式對(duì)比試驗(yàn),半年后進(jìn)行了一次檢測(cè),試驗(yàn)班與對(duì)照班成績(jī)統(tǒng)計(jì)如2×2列聯(lián)表所示(單位:人).
80及80分以上80分以下合計(jì)
試驗(yàn)班301040
對(duì)照班18m40
合計(jì)4832n
(1)求m,n
(2)你有多大把握認(rèn)為“成績(jī)與學(xué)習(xí)方式有關(guān)系”?
參考公式及數(shù)據(jù):K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d為樣本容量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)y=2sin(ωx+φ)(ω>0),若存在x0∈R,使得f(x0+2)-f(x0)=4,則ω的最小值為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=ex(2x-1)-a(x-1)有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,1)B.(0,1)C.(4e${\;}^{\frac{3}{2}}$,+∞)D.(0,1)∪(4e${\;}^{\frac{3}{2}}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)偶函數(shù)f(x)=sin(ωx+ϕ),ω>0,若f(x)在區(qū)間[0,π]至少存在一個(gè)零點(diǎn),則ω的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)=lnx-4x+1的遞增區(qū)間為( 。
A.(0,$\frac{1}{4}$)B.(0,4)C.(-∞,$\frac{1}{4}$)D.($\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.根據(jù)三視圖求空間幾何體的體積(  )
A.2B.$\frac{7}{3}$C.$\frac{8}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在等差數(shù)列{an}中,a1=2017,其前n項(xiàng)和為Sn,若$\frac{{S}_{2013}}{2013}$-$\frac{{S}_{2011}}{2011}$=2,則S2017=2017.

查看答案和解析>>

同步練習(xí)冊(cè)答案