10.若△OAB的垂心H(1,0)恰好為拋物線y2=2px的焦點,O為坐標原點,點A、B在此拋物線上,則此拋物線的方程是y2=4x,△OAB面積是10$\sqrt{5}$.

分析 根據(jù)焦點為H(1,0),求出拋物線的方程,利用對稱性,及AH⊥OB,得$\frac{2a}{{{a^2}-1}}•\frac{2b}{b^2}=-1$,解得$a=\sqrt{5}$(不妨取正值),即可計算面積.

解答 解:因為焦點為H(1,0),所以拋物線的方程是y2=4x.
設A(a2,2a),B(b2,2b),由拋物線的對稱性可知,b=-a.
又因為AH⊥OB,得$\frac{2a}{{{a^2}-1}}•\frac{2b}{b^2}=-1$,解得$a=\sqrt{5}$(不妨取正值),
從而可得△OAB面積是$\frac{1}{2}×5×4\sqrt{5}$=10$\sqrt{5}$.
故答案為${y^2}=4x,10\sqrt{5}$.

點評 本題考查拋物線的方程與性質(zhì),考查方程思想的運用,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

20.設集合A={2,0,11},則集合A的真子集個數(shù)為7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知等差數(shù)列{an}滿足a2=2,點(a4,a6)在直線x+2y-16=0上.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=an+2${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.己知3sin(π-α)+cos(2π-α)=0.
(1)求 $\frac{sinα+cosα}{2sinα-cosα}$
(2)求$\frac{{sin2α+{{cos}^2}α}}{2cos2α+sin2α+2}$
(3)求$tan(2α-\frac{π}{4})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在△OMN中,點A在OM上,點B在ON上,且AB∥MN,2OA=OM,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,則終點P落在四邊形ABNM內(nèi)(含邊界)時,$\frac{y+x+2}{x+1}$的取值范圍是( 。
A.$[\frac{1}{2},2]$B.$[\frac{1}{3},3]$C.$[\frac{3}{2},3]$D.$[\frac{4}{3},4]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{1}{3}$,左焦點F到直線l:x=9的距離為10,圓G:(x-1)2+y2=1,
(1)求橢圓的方程;
(2)若P是橢圓上任意一點,EF為圓N:(x-1)2+y2=4的任一直徑,求$\overrightarrow{PE}•\overrightarrow{PF}$的取值范圍;
(3)是否存在以橢圓上點M為圓心的圓M,使得圓M上任意一點N作圓G的切線,切點為T,都滿足$\frac{|NF|}{|NT|}=\sqrt{2}$?若存在,求出圓M的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知U=R,集合A={x|a-2<x<a+2},B={x|x2-(a+2)x+2a=0},a∈R,
(1)若a=0,求A∪B;
(2)若(∁UA)∩B≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.判斷兩個變量y與x是否相關(guān)時,選擇了4個不同的模型,它們的相關(guān)指數(shù)R2分別為:模型1的相關(guān)指數(shù)R2為0.86,模型2的相關(guān)指數(shù)R2為0.68,模型3的相關(guān)指數(shù)R2為0.88,模型4的相關(guān)指數(shù)R2為0.66.其中擬合效果最好的模型是(  )
A.模型1B.模型2C.模型3D.模型4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知向量$\overrightarrow{a}$=(1,0,-1),$\overrightarrow$=(-1,-1,0),則|$\overrightarrow{a}$|的值是$\sqrt{2}$,向量$\overrightarrow{a}$與$\overrightarrow$之間的夾角是120°.

查看答案和解析>>

同步練習冊答案