A. | 19 | B. | 34 | C. | 100 | D. | 484 |
分析 Sn=$\frac{n(3n-1)}{2}$,可得a1=1;n≥2時(shí),an=Sn-Sn-1.由a1,a4,am成等比數(shù)列,可得${a}_{4}^{2}$=a1am,代入解出即可得出.
解答 解:∵Sn=$\frac{n(3n-1)}{2}$,∴a1=1;
n≥2時(shí),an=Sn-Sn-1=$\frac{n(3n-1)}{2}$-$\frac{(n-1)(3n-4)}{2}$=3n-2.n=1時(shí)也成立.
∴an=3n-2.
∵a1,a4,am成等比數(shù)列,
∴${a}_{4}^{2}$=a1am,
∴102=1×(3m-2),
解得m=34.
故選:B.
點(diǎn)評 本題考查了等比數(shù)列與等差數(shù)列的通項(xiàng)公式及其求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,1) | B. | [0,2)∪{-$\frac{18}{{e}^{2}}$} | C. | (0,2)∪{-$\frac{18}{{e}^{2}}$} | D. | [0,2$\sqrt{e}$)∪{-$\frac{18}{{e}^{2}}$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | -3 | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | b<c<a | C. | a<c<b | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4x}$ | B. | $\frac{1}{2x}$ | C. | $\frac{2}{x}$ | D. | $\frac{1}{x}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com