【題目】在平面直角坐標中,過點的直線與拋物線相交于兩點,.

(1)求證:為定值;

(2)是否存在平行于軸的定直線被以為直徑的截得的弦長為定值?如果存在,該直線方程和弦長;如果不存在,說明理由.

【答案】1見解析;2存在平行于軸的定直線被以為直徑的截得的弦長為定值.

【解析】

試題分析:(Ⅰ)設(shè)出過點的直線方程,與拋物線方程聯(lián)立消去未知數(shù),由根與系數(shù)關(guān)系可得為定值;先設(shè)存在直線滿足條件,求出以為直徑的圓的圓心坐標和半徑,利用勾股定理求出弦長表達式,由表達式可知,當時,弦長為定值.

試題解析:(Ⅰ)(解法1)當直線垂直于軸時,,

因此定值,

當直線不垂直于軸時,設(shè)直線的方程為

因此有為定值

(解法2)設(shè)直線的方程為

因此有為定值.

設(shè)存在直線滿足條件,則

的中點,

因此以為直徑的圓的半徑

點到直線的距離

所以所截弦長為

時,弦長為定值2,這時直線方程為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線(m+2)x-y-3=0與直線(3m-2)x-y+1=0平行,則實數(shù)m的值是( )
A.1
B.2
C.3
D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題
①空集沒有子集;
②任何集合至少有兩個子集;
③空集是任何集合的真子集;
④若A , 則A.
其中正確的個數(shù)是( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)常數(shù).

(1)證明:當時,函數(shù)有且只有一個極值點;

(2)若函數(shù)存在兩個極值點,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1的最小正周期

2在區(qū)間上的最大值和最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 x≥0成等差數(shù)列.又數(shù)列{an}an>0,a1=3 此數(shù)列的前n項的和Snn∈N*對所有大于1的正整數(shù)n都有SnfSn-1

1求數(shù)列{an}的第n+1項;

2,的等比中項且Tn為{bn}n項和,求Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人各進行一次射擊,假設(shè)兩人擊中目標的概率分別是0.60.7,且射擊結(jié)果相互獨立,則甲、乙至多一人擊中目標的概率為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列,計算數(shù)列的第100項.

現(xiàn)已給出該問題算法的流程圖(如圖1所示)

(1)請在圖1中判斷框的(其中中用的關(guān)系表示)處填上合適的語句,使之完成該問題的算法功能.

(2)根據(jù)流程圖1補充完整程序語言(如圖2)(即在處填寫合適的語句).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga(a>0,且a≠1)

(1)判斷f(x)的奇偶性并證明;

(2)若對于x[2,4],恒有f(x)>loga成立,求m的取值范圍.

查看答案和解析>>

同步練習冊答案