6.要把3張不同的電影票分給10個人,每人最多一張,則有不同的分法種數(shù)是( 。
A.2 160B.720C.240D.120

分析 根據(jù)題意,依次分析三張電影票的分法,由分步計數(shù)原理計算可得答案.

解答 解:根據(jù)題意,可分三步分析:
①,任取一張電影票分給一人,有10種不同分法;
②,從剩下的兩張中任取一張,由于一人已得電影票,不能再參與,故有9種不同分法.
③,前面兩人已得電影票,不再參與,因而剩余最后一張有8種不同分法.所以不同的分法種數(shù)是10×9×8=720種;
故選:B.

點評 本題考查分步計數(shù)原理的應(yīng)用,注意“每人最多一張”的條件,進(jìn)行分步分析.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知直線l:kx-y+1+2k=0,k∈R
(1)直線過定點P,求點P坐標(biāo);
(2)若直線l交x軸負(fù)半軸于點A,交y軸正半軸于點B,O為坐標(biāo)原點,設(shè)三角形OAB的面積為4,求出直線l方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=sinx+$\sqrt{3}$cosx在x=θ時取得最大值,則cos(2θ+$\frac{π}{4}$)=( 。
A.-$\frac{\sqrt{2}+\sqrt{6}}{4}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}-\sqrt{6}}{4}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.記“點M(x,y)滿足x2+y2≤a(a>0)“為事件A,記“M(x,y)滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{5x-2y-4≤0}\\{2x+y+2≥0}\end{array}\right.$”為事件B,若P(B|A)=1,則實數(shù)a的最大值為( 。
A.$\frac{1}{2}$B.$\frac{4}{5}$C.1D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知a∈R,“2a≥2”是“函數(shù)y=logax在(0,+∞)上為增函數(shù)”的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的長軸長為4,焦距為2.
(1)求橢圓C的方程:
(2)過點D(0,1)且斜率為k的動直線l與橢圓C相交于A、B兩點,E是y軸上異于點D的一點,記△EAD與△EBD的面積分別為S1,S2,滿足S1=λS2,其中λ=$\frac{{|{EA}|}}{{|{EB}|}}$.
(i)求點E的坐標(biāo):
(ii)若λ=2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)復(fù)數(shù)z=2m+(4-m2)i,當(dāng)實數(shù)m取何值時,復(fù)數(shù)z對應(yīng)的點:
(1)位于虛軸上?
(2)位于一、三象限?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,AB是圓O的直徑,矩形DCBE垂直于圓O所在的平面,AB=4,BE=2.
(Ⅰ)證明:平面ADE⊥平面ACD;
(Ⅱ)當(dāng)三棱錐C-ADE體積最大時,求三棱錐C-ADE的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)一個軸截面是邊長為4的正方形的圓柱體積為V1,底面邊長為$2\sqrt{3}$,側(cè)棱長為$\sqrt{10}$的正四棱錐的體積為V2,則$\frac{V_1}{V_2}$的值是2π.

查看答案和解析>>

同步練習(xí)冊答案