18.數(shù)列{an}中,a1=1,當n≥2時,其前n項和為Sn,滿足${S}_{n}^{2}$=an(Sn-$\frac{1}{2}$).
(Ⅰ)求證:數(shù)列{$\frac{1}{{S}_{n}}$}是等差數(shù)列,并求Sn的表達式;
(Ⅱ)設bn=$\frac{{S}_{n}}{2n+1}$,數(shù)列{bn}的前n項和為Tn,不等式Tn≥$\frac{1}{18}$(m2-5m)對所有的n∈N*恒成立,求正整數(shù)m的最大值.

分析 (1)由$S_n^2={a_n}({S_n}-\frac{1}{2}),{a_n}={S_n}-{S_{n-1}}(n≥2)$,化為:$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n-1}}$=2,即可證明.利用等差數(shù)列的通項公式即可得出.
(2)bn=$\frac{{S}_{n}}{2n+1}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,再利用“裂項求和”方法、數(shù)列的單調(diào)性即可得出.

解答 (1)證明:∵$S_n^2={a_n}({S_n}-\frac{1}{2}),{a_n}={S_n}-{S_{n-1}}(n≥2)$,
∴${S}_{n}^{2}$=(Sn-Sn-1)$({S}_{n}-\frac{1}{2})$,化為:$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n-1}}$=2,
所以數(shù)列{$\frac{1}{{S}_{n}}$}是首項為1,公差為2的等差數(shù)列.
故$\frac{1}{{S}_{n}}$=1+2(n-1)=2n-1,∴Sn=$\frac{1}{2n-1}$.
(2)解:bn=$\frac{{S}_{n}}{2n+1}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴Tn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$≥$\frac{1}{3}$.
又∵不等式Tn≥$\frac{1}{18}$(m2-5m)對所有的n∈N*恒成立,
∴$\frac{1}{3}$≥$\frac{1}{18}$(m2-5m),
化簡得:m2-5m-6≤0,解得:-1≤m≤6.
∴正整數(shù)m的最大值為6.

點評 本題考查了數(shù)列遞推關系、等差數(shù)列的通項公式與求和公式、數(shù)列的單調(diào)性、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.“a>b”是“ac2>bc2”的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設拋物線y2=-12x上一點P到y(tǒng)軸的距離是1,則點P到該拋物線焦點的距離是4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知α是第二象限的角,tanα=$\frac{1}{2}$,則cosα=-$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F(c,0),作圓x2+y2=$\frac{{a}^{2}}{4}$的切線,切點為E,延長FE交雙曲線左支于點M,且E是MF的中點,則雙曲線離心率為( 。
A.$\sqrt{10}$B.$\frac{\sqrt{10}}{2}$C.$\frac{\sqrt{10}}{5}$D.2$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,點P(3,$\frac{5}{2}$)為雙曲線上一點,若△PF1F2的內(nèi)切圓的半徑為1,則雙曲線的方程為$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.過雙曲線x2-$\frac{y^2}{15}$=1的右支上一點P,分別向圓C1:(x+4)2+y2=4和圓C2:(x-4)2+y2=4作切線,切點分別為M,N,則|PM|2-|PN|2的最小值為(  )
A.10B.13C.16D.19

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設函數(shù)f(x)=|sin(x+$\frac{π}{3}$)|(x∈R),則f(x)(  )
A.周期函數(shù),最小正周期為πB.周期函數(shù),最小正周期為$\frac{π}{2}$
C.周期函數(shù),最小正周期為2πD.非周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.正方體ABCD-A1B1C1D1中,截面BA1C1和直線AC的位置關系是(  )
A.AC∥平面BA1C1B.AC與平面BA1C1相交
C.AC在平面BA1C1內(nèi)D.上述答案均不正確

查看答案和解析>>

同步練習冊答案