16.已知函數(shù)$f(x)=a-\frac{2}{{{2^x}+1}}({x∈R,a∈R})$.
(1)求證:f(x)在(-∞,+∞)上是增函數(shù);
(2)設(shè)函數(shù)f(x)存在反函數(shù)f-1(x),且f(x)是奇函數(shù),若方程f-1(x)=log2(x+t)有實數(shù)根,求實數(shù)t的取值范圍.

分析 (1)證明f′(x)=$\frac{{2}^{x+1}ln2}{({2}^{x}+1)^{2}}$>0,即可證明f(x)在(-∞,+∞)上是增函數(shù);
(2)求出反函數(shù),利用方程,結(jié)合基本不等式,求實數(shù)t的取值范圍.

解答 (1)證明:∵f′(x)=$\frac{{2}^{x+1}ln2}{({2}^{x}+1)^{2}}$>0,
∴f(x)在(-∞,+∞)上是增函數(shù);
(2)解:∵f(x)是奇函數(shù),
∴f(0)=a-$\frac{2}{1+1}$=0,
∴a=1,
由f(x)=1-$\frac{2}{{2}^{x}+1}$得f-1(x)=log2$\frac{1+x}{1-x}$(-1<x<1),
∵方程f-1(x)=log2(x+t)有實數(shù)根,
∴$\frac{1+x}{1-x}$=x+t(-1<x<1),
∴t=(1-x)+$\frac{2}{1-x}$-2≥2$\sqrt{2}$-2,當(dāng)且僅當(dāng)x=1-$\sqrt{2}$時取等號,
∴t的取值范圍是[2$\sqrt{2}$-2,+∞).

點評 本題考查函數(shù)單調(diào)性的證明,考查基本不等式的運用,正確變形是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)$y=ln(2sinx-\sqrt{2})+\sqrt{1-2cosx}$的定義域是{x|$\frac{π}{3}$+2kπ≤x<$\frac{3π}{4}$+2kπ,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上是增函數(shù),令$a=f(cos\frac{3π}{10})$,$b=f(-\frac{π}{5})$,$c=f(tan\frac{π}{5})$,則( 。
A.b<a<cB.c<b<aC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知定義在R上的函數(shù)f(x)=$\frac{ax}{{x}^{2}+1}$+1,a∈R以下說法正確的是( 。
①函數(shù)f(x)的圖象是中心對稱圖形;
②函數(shù)f(x)有兩個極值;
③函數(shù)f(x)零點個數(shù)最多為三個;
④當(dāng)a>0時,若1<m<n,f(m)+f(n)>2f($\frac{m+n}{2}$)
A.①④B.②④C.①③D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)=e2x+ax在(0,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍為( 。
A.[-1,+∞)B.(-1,+∞)C.[-2,+∞)D.(-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}滿足an+2-an+1=an+1-an對于任意n∈N*恒成立,且a1=1,a3=2,數(shù)列{bn}的前n項和為Sn,且滿足Sn+$\frac{1}{2}$bn=1(n∈N*)
(Ⅰ)求數(shù)列{an},{bn}的通項公式
(Ⅱ)設(shè)cn=an•bn,數(shù)列{cn}的前n項和為Tn
(1)求Tn
(2)求滿足不等式$\frac{{T}_{n}}{1-{S}_{n}}$≤9的所有的n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓的中心在原點,焦點為F1(0,-2$\sqrt{2}$),F(xiàn)2(0,2$\sqrt{2}$),且離心率e=$\frac{2\sqrt{2}}{3}$.
(1)求橢圓的方程;
(2)直線l(與坐標軸不平行)與橢圓交于不同的兩點A、B,且線段AB中點的橫坐標為-$\frac{1}{2}$,求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在平面內(nèi),$\overrightarrow{A{B_1}}⊥\overrightarrow{A{B_2}},|\overrightarrow{O{B_1}}|=3,|\overrightarrow{O{B_2}}|=4,\overrightarrow{AP}=\overrightarrow{A{B_1}}+\overrightarrow{A{B_2}}$,若$1<|\overrightarrow{OP}|<2$,則$|\overrightarrow{OA}|$的取值范圍是( 。
A.$(2\sqrt{3},\sqrt{17})$B.$(\sqrt{17},\sqrt{21})$C.$(\sqrt{17},2\sqrt{6})$D.$(\sqrt{21},2\sqrt{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若實數(shù)數(shù)列:-1,a1,a2,a3,-81成等比數(shù)列,則圓錐曲線x2+$\frac{{y}^{2}}{{a}_{2}}$=1的離心率是( 。
A.$\frac{1}{3}$或$\sqrt{10}$B.$\sqrt{10}$或$\frac{2\sqrt{2}}{3}$C.$\frac{2\sqrt{2}}{3}$D.$\sqrt{10}$

查看答案和解析>>

同步練習(xí)冊答案