【題目】在平面直角坐標(biāo)系中,點(diǎn),直線(xiàn),圓.
(1)求的取值范圍,并求出圓心坐標(biāo);
(2)有一動(dòng)圓的半徑為,圓心在上,若動(dòng)圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
【答案】(1)的取值范圍為,圓心坐標(biāo)為;(2).
【解析】
(1)根據(jù)圓的一般方程得出關(guān)于實(shí)數(shù)的不等式,即可求出實(shí)數(shù)的取值范圍,再利用圓心坐標(biāo)公式可求出圓心坐標(biāo);
(2)由題意可知點(diǎn)的坐標(biāo)為,由可知線(xiàn)段的垂直平分線(xiàn)與圓有公共點(diǎn),由此可得出關(guān)于實(shí)數(shù)的不等式,進(jìn)而可求出實(shí)數(shù)的取值范圍.
(1)由于方程表示的曲線(xiàn)為圓,則,
解得,所以,實(shí)數(shù)的取值范圍是,圓心的坐標(biāo)為;
(2)由于點(diǎn)在直線(xiàn)上,且該點(diǎn)的橫坐標(biāo)為,則點(diǎn)的坐標(biāo)為,
由可知,點(diǎn)為線(xiàn)段的垂直平分線(xiàn)上一點(diǎn),
且線(xiàn)段的垂直平分線(xiàn)方程為,所以,直線(xiàn)與圓有公共點(diǎn),
由于圓的圓心坐標(biāo)為,半徑為,則有,即,
解得,因此,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為偶函數(shù),.
(1)求實(shí)數(shù)的值;
(2)若時(shí),函數(shù)的圖像恒在圖像的下方,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),求函數(shù)在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求函數(shù)的極值;
(Ⅱ)若, , ,使得(),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解甲、乙兩校學(xué)生自主招生通過(guò)情況,從甲校抽取60人,從乙校抽取50人進(jìn)行分析。
(1)根據(jù)題目條件完成上面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為自主招生通過(guò)情況與學(xué)生所在學(xué)校有關(guān);
(2)現(xiàn)已知甲校三人在某大學(xué)自主招生中通過(guò)的概率分別為,,,用隨機(jī)變量X表示三人在該大學(xué)自主招生中通過(guò)的人數(shù),求X的分布列及期望.
參考公式:.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且滿(mǎn)足b2=ac,cosB=.
(1)求+的值;
(2)設(shè)=,求三邊a、b、c的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了加強(qiáng)學(xué)生數(shù)學(xué)核心素養(yǎng)的培養(yǎng),鍛煉學(xué)生自主探究學(xué)習(xí)的能力,他們以教材第82頁(yè)第8題的函數(shù)為基本素材,研究該函數(shù)的相關(guān)性質(zhì),取得部分研究成果如下:
①同學(xué)甲發(fā)現(xiàn):函數(shù)的定義域?yàn)?/span>;
②同學(xué)乙發(fā)現(xiàn):函數(shù)是偶函數(shù);
③同學(xué)丙發(fā)現(xiàn):對(duì)于任意的都有;
④同學(xué)丁發(fā)現(xiàn):對(duì)于任意的,都有;
⑤同學(xué)戊發(fā)現(xiàn):對(duì)于函數(shù)定義域中任意的兩個(gè)不同實(shí)數(shù),總滿(mǎn)足.
其中所有正確研究成果的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一位幼兒園老師給班上k(k≥3)個(gè)小朋友分糖果.她發(fā)現(xiàn)糖果盒中原有糖果數(shù)為a0,就先從別處抓2塊糖加入盒中,然后把盒內(nèi)糖果的分給第一個(gè)小朋友;再?gòu)膭e處抓2塊糖加入盒中,然后把盒內(nèi)糖果的分給第二個(gè)小朋友;…,以后她總是在分給一個(gè)小朋友后,就從別處抓2塊糖放入盒中,然后把盒內(nèi)糖果的分給第n(n=1,2,3,…k)個(gè)小朋友.如果設(shè)分給第n個(gè)小朋友后(未加入2塊糖果前)盒內(nèi)剩下的糖果數(shù)為an.
(1)當(dāng)k=3,a0=12時(shí),分別求a1,a2,a3;
(2)請(qǐng)用an-1表示an;令bn=(n+1)an,求數(shù)列{bn}的通項(xiàng)公式;
(3)是否存在正整數(shù)k(k≥3)和非負(fù)整數(shù)a0,使得數(shù)列{an}(n≤k)成等差數(shù)列,如果存在,請(qǐng)求出所有的k和a0,如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的方程, ,分別求滿(mǎn)足下列條件實(shí)數(shù)的取值范圍:
(1)有解;
(2)有唯一解;
(3)有兩個(gè)解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于實(shí)數(shù)符號(hào)表示不超過(guò)x的最大整數(shù),例如定義函數(shù)則下列命題正確中的是__________
(1)函數(shù)的最大值為1;
(2)函數(shù)是增函數(shù);
(3)方程有無(wú)數(shù)個(gè)根;
(4)函數(shù)的最小值為0.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com