精英家教網 > 高中數學 > 題目詳情

在數列{an}中,Sn為其前n項和,滿足數學公式
( I)若k=1,求數列{an}的通項公式;
( II)若數列{an-2n-1}為公比不為1的等比數列,求Sn

解:(1)當k=1時,Sn=an+n2-n,
∴Sn-1=n2-n,(n≥2),
∴Sn=(n+1)2-(n+1)=n2+n(n≥1)
∴當n=1時,a1=S1=2;
當n≥2時,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n,
所以數列{an}的通項公式為an=2n(n∈N*).
( II)當n≥2時,an=Sn-Sn-1
=kan-kan-1+2n-2,
∴(k-1)an=kan-1-2n+2,a1=S1=ka1
若k=1,則an-2n-1=-1,
從而{an-2n-1}為公比為1的等比數列,不合題意;
若k≠1,則a1=0,a2=,a3=,a1-3=-3,a2-5=,a3-7=
由題意得,=(a1-3)(a3-7)≠0,
∴k=0或k=
當k=0時,Sn=n2-n,an=2n-2,an-2n-1=-3,不合題意;
當k=時,an=3an-1-4n+4,從而an-2n-1=3[an-1-2(n-1)-1],
∵a1-2×1-1=-3≠0,an-2n-1≠0,{an-2n-1}為公比為3的等比數列,
∴an-2n-1=-3n,
∴an=2n-3n+1,
∴Sn=n2+2n-+
分析:(1)當k=1時,Sn=an+n2-n,而an=Sn-Sn-1(n≥2),可求得Sn=n2+n,從而可求得數列{an}的通項公式;
點評:本題考查等差數列的概念,考查數列的求和,求得k的值是難點,也是關鍵,突出考查分類討論思想與化歸思想的應用,考查類比推理與運算能力,屬于難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如果由數列{an}生成的數列{bn}滿足對任意的n∈N*均有bn+1<bn,其中bn=an+1-an,則稱數列{an}為“Z數列”.
(Ⅰ)在數列{an}中,已知an=-n2,試判斷數列{an}是否為“Z數列”;
(Ⅱ)若數列{an}是“Z數列”,a1=0,bn=-n,求an;
(Ⅲ)若數列{an}是“Z數列”,設s,t,m∈N*,且s<t,求證:at+m-as+m<at-as

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)若對于任意的n∈N*,總有
n+2
n(n+1)
=
A
n
+
B
n+1
成立,求常數A,B的值;
(2)在數列{an}中,a1=
1
2
,an=2an-1+
n+2
n(n+1)
(n≥2,n∈N*),求通項an;
(3)在(2)題的條件下,設bn=
n+1
2(n+1)an+2
,從數列{bn}中依次取出第k1項,第k2項,…第kn項,按原來的順序組成新的數列{cn},其中cn=bkn,其中k1=m,kn+1-kn=r∈N*.試問是否存在正整數m,r使
lim
n→+∞
(c1+c2+…+cn)=S
4
61
<S<
1
13
成立?若存在,求正整數m,r的值;不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

下列幾種推理過程是演繹推理的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

記公差d≠0的等差數列{an}的前n項和為Sn,已知a1=2+
2
,S3=12+3
2

(1)求數列{an}的通項公式an及前n項和Sn;
(2)記bn=an-
2
,若自然數n1,n2,…,nk,…滿足1≤n1<n2<…<nk<…,并且b n1,b n2,…,b nk,…成等比數列,其中n1=1,n2=3,求nk(用k表示);
(3)試問:在數列{an}中是否存在三項ar,as,at(r<s<t,r,s,t∈N*)恰好成等比數列?若存在,求出此三項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年江蘇省高三元月雙周練習數學試卷 題型:解答題

(本小題滿分16分)記公差d≠0的等差數列{an}的前n項和為Sn,已知a1=2+,S3=12+

(1)求數列{an}的通項公式an及前n項和Sn;

(2)記bn=an,若自然數n1,n2,…,nk,…滿足1≤n1<n2<…<nk<…,并且,,…,,…成等比數列,其中n1=1,n2=3,求nk(用k表示);

(3)試問:在數列{an}中是否存在三項ar,as,at(r<s<t,r,s,t∈N*)恰好成等比數列?若存在,求出此三項;若不存在,請說明理由.

 

查看答案和解析>>

同步練習冊答案